SNOBFIT¶
- class SNOBFIT(maxiter=1000, maxfail=10, maxmp=None, verbose=False)[source]¶
Bases:
qiskit.algorithms.optimizers.optimizer.Optimizer
Stable Noisy Optimization by Branch and FIT algorithm.
SnobFit is used for the optimization of derivative-free, noisy objective functions providing robust and fast solutions of problems with continuous variables varying within bound.
Uses skquant.opt installed with pip install scikit-quant. For further detail, please refer to https://github.com/scikit-quant/scikit-quant and https://qat4chem.lbl.gov/software.
- Parameters
maxiter (
int
) – Maximum number of function evaluations.maxmp (
Optional
[int
]) – Maximum number of model points requested for the local fit. Default = 2 * number of parameters + 6 set to this value when None.maxfail (
int
) – Maximum number of failures to improve the solution. Stops the algorithm after maxfail is reached.verbose (
bool
) – Provide verbose (debugging) output.
- Raises
MissingOptionalLibraryError – scikit-quant or SQSnobFit not installed
QiskitError – If NumPy 1.24.0 or above is installed. See https://github.com/scikit-quant/scikit-quant/issues/24 for more details.
Methods
Returns support level dictionary.
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Minimize the scalar function.
Print algorithm-specific options.
Set max evals grouped
Sets or updates values in the options dictionary.
Wrap the function to implicitly inject the args at the call of the function.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶
- Return type
Dict
[str
,Any
]