QSVR¶
- class QSVR(*args, quantum_kernel=None, **kwargs)[kaynak]¶
Bases:
SVR
,SerializableModelMixin
Quantum Support Vector Regressor that extends the scikit-learn sklearn.svm.SVR regressor and introduces an additional quantum_kernel parameter.
This class shows how to use a quantum kernel for regression. The class inherits its methods like
fit
andpredict
from scikit-learn, see the example below. Read more in the scikit-learn user guide.Example
qsvr = QSVR(quantum_kernel=qkernel) qsvr.fit(sample_train,label_train) qsvr.predict(sample_test)
- Parametreler:
quantum_kernel (
Optional
[BaseKernel
]) – Quantum kernel to be used for regression.*args – Variable length argument list to pass to SVR constructor.
**kwargs – Arbitrary keyword arguments to pass to SVR constructor.
Attributes
Returns quantum kernel
Methods