LieTrotter¶
- class LieTrotter(reps=1, insert_barriers=False, cx_structure='chain', atomic_evolution=None)[소스]¶
기반 클래스:
ProductFormula
The Lie-Trotter product formula.
The Lie-Trotter formula approximates the exponential of two non-commuting operators with products of their exponentials up to a second order error:
\[e^{A + B} \approx e^{A}e^{B}.\]In this implementation, the operators are provided as sum terms of a Pauli operator. For example, we approximate
\[e^{-it(XX + ZZ)} = e^{-it XX}e^{-it ZZ} + \mathcal{O}(t^2).\]참조
[1]: D. Berry, G. Ahokas, R. Cleve and B. Sanders, 《Efficient quantum algorithms for simulating sparse Hamiltonians》 (2006). arXiv:quant-ph/0508139 [2]: N. Hatano and M. Suzuki, 《Finding Exponential Product Formulas of Higher Orders》 (2005). arXiv:math-ph/0506007
- 매개변수
reps (int) – The number of time steps.
insert_barriers (bool) – Whether to insert barriers between the atomic evolutions.
cx_structure (str) – How to arrange the CX gates for the Pauli evolutions, can be 《chain》, where next neighbor connections are used, or 《fountain》, where all qubits are connected to one.
atomic_evolution (Optional[Callable[[Union[Pauli, SparsePauliOp], float], QuantumCircuit]]) – A function to construct the circuit for the evolution of single Pauli string. Per default, a single Pauli evolution is decomopsed in a CX chain and a single qubit Z rotation.
Methods
Synthesize an
qiskit.circuit.library.PauliEvolutionGate
.Attributes
- settings¶
Return the settings in a dictionary, which can be used to reconstruct the object.
- 반환
A dictionary containing the settings of this product formula.
- 예외 발생
NotImplementedError – If a custom atomic evolution is set, which cannot be serialized.