Korean
Languages
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

PhaseOracle

class PhaseOracle(expression, synthesizer=None)[소스]

기반 클래스: QuantumCircuit

Phase Oracle.

The Phase Oracle object constructs circuits for any arbitrary input logical expressions. A logical expression is composed of logical operators & (AND), | (OR), ~ (NOT), and ^ (XOR). as well as symbols for literals (variables). For example, 〈a & b〉, and (v0 | ~v1) & (~v2 & v3) are both valid string representation of boolean logical expressions.

For convenience, this oracle, in addition to parsing arbitrary logical expressions, also supports input strings in the DIMACS CNF format, which is the standard format for specifying SATisfiability (SAT) problem instances in Conjunctive Normal Form (CNF), which is a conjunction of one or more clauses, where a clause is a disjunction of one or more literals. See qiskit.circuit.library.phase_oracle.PhaseOracle.from_dimacs_file().

From 16 variables on, possible performance issues should be expected when using the default synthesizer.

Creates a PhaseOracle object

매개변수
  • expression (Union[str, ClassicalElement]) – A Python-like boolean expression.

  • synthesizer (Optional[Callable[[BooleanExpression], QuantumCircuit]]) – Optional. A function to convert a BooleanExpression into a QuantumCircuit If None is provided, Tweedledum’s pkrm_synth with phase_esop will be used.

Methods Defined Here

evaluate_bitstring

Evaluate the oracle on a bitstring.

from_dimacs_file

Create a PhaseOracle from the string in the DIMACS format.

Attributes

ancillas

Returns a list of ancilla bits in the order that the registers were added.

반환 형식

List[AncillaQubit]

calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form

{〈gate_name〉: {(qubits, params): schedule}}

반환 형식

dict

clbits

Returns a list of classical bits in the order that the registers were added.

반환 형식

List[Clbit]

data

Return the circuit data (instructions and context).

반환

a list-like object containing the CircuitInstructions for each instruction.

반환 형식

QuantumCircuitData

extension_lib = 'include "qelib1.inc";'
global_phase

Return the global phase of the circuit in radians.

반환 형식

Union[ParameterExpression, float]

header = 'OPENQASM 2.0;'
instances = 94
metadata

The user provided metadata associated with the circuit

The metadata for the circuit is a user provided dict of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

반환 형식

dict

num_ancillas

Return the number of ancilla qubits.

반환 형식

int

num_clbits

Return number of classical bits.

반환 형식

int

num_parameters

The number of parameter objects in the circuit.

반환 형식

int

num_qubits

Return number of qubits.

반환 형식

int

op_start_times

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

반환 형식

List[int]

반환

List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data.

예외 발생

AttributeError – When circuit is not scheduled.

parameters

The parameters defined in the circuit.

This attribute returns the Parameter objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector are still sorted numerically.

예제

The snippet below shows that insertion order of parameters does not matter.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters  # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])

Bear in mind that alphabetical sorting might be unituitive when it comes to numbers. The literal 《10》 comes before 《2》 in strict alphabetical sorting.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
   ┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
   └─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])

To respect numerical sorting, a ParameterVector can be used.


>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
...     circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
    ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
    ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
    ..., ParameterVectorElement(x[11])
])
반환 형식

ParameterView

반환

The sorted Parameter objects in the circuit.

prefix = 'circuit'
qubits

Returns a list of quantum bits in the order that the registers were added.

반환 형식

List[Qubit]