Japanese

English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

# SuzukiTrotter¶

class SuzukiTrotter(order=2, reps=1, insert_barriers=False, cx_structure='chain', atomic_evolution=None)[ソース]

ベースクラス: ProductFormula

The (higher order) Suzuki-Trotter product formula.

The Suzuki-Trotter formulas improve the error of the Lie-Trotter approximation. For example, the second order decomposition is

$e^{A + B} \approx e^{B/2} e^{A} e^{B/2}.$

Higher order decompositions are based on recursions, see Ref.  for more details.

In this implementation, the operators are provided as sum terms of a Pauli operator. For example, in the second order Suzuki-Trotter decomposition we approximate

$e^{-it(XX + ZZ)} = e^{-it/2 ZZ}e^{-it XX}e^{-it/2 ZZ} + \mathcal{O}(t^3).$

: D. Berry, G. Ahokas, R. Cleve and B. Sanders, 「Efficient quantum algorithms for simulating sparse Hamiltonians」 (2006). arXiv:quant-ph/0508139 : N. Hatano and M. Suzuki, 「Finding Exponential Product Formulas of Higher Orders」 (2005). arXiv:math-ph/0506007

パラメータ
• order (int) – The order of the product formula.

• reps (int) – The number of time steps.

• insert_barriers (bool) – Whether to insert barriers between the atomic evolutions.

• cx_structure (str) – How to arrange the CX gates for the Pauli evolutions, can be 「chain」, where next neighbor connections are used, or 「fountain」, where all qubits are connected to one.

• atomic_evolution (Optional[Callable[[Union[Pauli, SparsePauliOp], float], QuantumCircuit]]) – A function to construct the circuit for the evolution of single Pauli string. Per default, a single Pauli evolution is decomopsed in a CX chain and a single qubit Z rotation.

Methods

 synthesize Synthesize an qiskit.circuit.library.PauliEvolutionGate.

Attributes

settings

Return the settings in a dictionary, which can be used to reconstruct the object.

Dict[str, Any]

A dictionary containing the settings of this product formula.

NotImplementedError – If a custom atomic evolution is set, which cannot be serialized.