French
Languages
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

# ExactReciprocal¶

class ExactReciprocal(num_state_qubits, scaling, neg_vals=False, name='1/x')[source]

Bases : QuantumCircuit

Exact reciprocal

$|x\rangle |0\rangle \mapsto \cos(1/x)|x\rangle|0\rangle + \sin(1/x)|x\rangle |1\rangle$
Paramètres
• num_state_qubits (int) – The number of qubits representing the value to invert.

• scaling (float) – Scaling factor $$s$$ of the reciprocal function, i.e. to compute $$s / x$$.

• neg_vals (bool) – Whether $$x$$ might represent negative values. In this case the first qubit is the sign, with $$|1\rangle$$ for negative and $$|0\rangle$$ for positive. For the negative case it is assumed that the remaining string represents $$1 - x$$. This is because $$e^{-2 \pi i x} = e^{2 \pi i (1 - x)}$$ for $$x \in [0,1)$$.

• name (str) – The name of the object.

Note

It is assumed that the binary string $$x$$ represents a number < 1.

Attributes

ancillas

Returns a list of ancilla bits in the order that the registers were added.

Type renvoyé

List[AncillaQubit]

calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}

Type renvoyé

dict

clbits

Returns a list of classical bits in the order that the registers were added.

Type renvoyé

List[Clbit]

data

Return the circuit data (instructions and context).

Renvoie

a list-like object containing the CircuitInstructions for each instruction.

Type renvoyé

QuantumCircuitData

extension_lib = 'include "qelib1.inc";'
global_phase

Return the global phase of the circuit in radians.

Type renvoyé

Union[ParameterExpression, float]

header = 'OPENQASM 2.0;'
instances = 2016

The user provided metadata associated with the circuit

The metadata for the circuit is a user provided dict of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

Type renvoyé

dict

num_ancillas

Return the number of ancilla qubits.

Type renvoyé

int

num_clbits

Return number of classical bits.

Type renvoyé

int

num_parameters

The number of parameter objects in the circuit.

Type renvoyé

int

num_qubits

Return number of qubits.

Type renvoyé

int

op_start_times

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

Type renvoyé

List[int]

Renvoie

List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data.

Lève

AttributeError – When circuit is not scheduled.

parameters

The parameters defined in the circuit.

This attribute returns the Parameter objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector are still sorted numerically.

Exemples

The snippet below shows that insertion order of parameters does not matter.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters  # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])


Bear in mind that alphabetical sorting might be unituitive when it comes to numbers. The literal « 10 » comes before « 2 » in strict alphabetical sorting.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])


To respect numerical sorting, a ParameterVector can be used.



>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
...     circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])

Type renvoyé

ParameterView

Renvoie

The sorted Parameter objects in the circuit.

prefix = 'circuit'
qubits

Returns a list of quantum bits in the order that the registers were added.

Type renvoyé

List[Qubit]