• Documentation
  • Community
  • Learn
  • Overview

Learn Quantum Computation using Qiskit

  • Learn Quantum Computation using Qiskit
  • What is Quantum?
  • 0. Prerequisites
    • 0.1 Setting Up Your Environment
    • 0.2 Python and Jupyter Notebooks
  • 1. Quantum States and Qubits
    • 1.1 Introduction
    • 1.2 The Atoms of Computation
    • 1.3 Representing Qubit States
    • 1.4 Single Qubit Gates
    • 1.5 The Case for Quantum
  • 2. Multiple Qubits and Entanglement
    • 2.1 Introduction
    • 2.2 Multiple Qubits and Entangled States
    • 2.3 Phase Kickback
    • 2.4 More Circuit Identities
    • 2.5 Proving Universality
    • 2.6 Classical Computation on a Quantum Computer
  • 3. Quantum Protocols and Quantum Algorithms
    • 3.1 Defining Quantum Circuits
    • 3.2 Deutsch-Jozsa Algorithm
    • 3.3 Bernstein-Vazirani Algorithm
    • 3.4 Simon's Algorithm
    • 3.5 Quantum Fourier Transform
    • 3.6 Quantum Phase Estimation
    • 3.7 Shor's Algorithm
    • 3.8 Grover's Algorithm
    • 3.9 Quantum Counting
    • 3.10 Quantum Teleportation
    • 3.11 Superdense Coding
    • 3.12 Quantum Key Distribution
  • 4. Quantum Algorithms for Applications
    • 4.1 Applied Quantum Algorithms
      • 4.1.1 Solving Linear Systems of Equations using HHL
      • 4.1.2 Simulating Molecules using VQE
      • 4.1.3 Solving combinatorial optimization problems using QAOA
      • 4.1.4 Solving Satisfiability Problems using Grover's Algorithm
      • 4.1.5 Hybrid quantum-classical Neural Networks with PyTorch and Qiskit
    • 4.2 Implementations of Recent Quantum Algorithms
      • 4.2.1 Variational Quantum Linear Solver
      • 4.2.2 Quantum Image Processing - FRQI and NEQR Image Representations
  • 5. Investigating Quantum Hardware Using Quantum Circuits
    • 5.1 Introduction to Quantum Error Correction using Repetition Codes
    • 5.2 Measurement Error Mitigation
    • 5.3 Randomized Benchmarking
    • 5.4 Measuring Quantum Volume
  • 6. Investigating Quantum Hardware Using Microwave Pulses
    • 6.1 Calibrating Qubits with Qiskit Pulse
    • 6.2 Accessing Higher Energy States
    • 6.3 Introduction to Transmon Physics
    • 6.4 Circuit Quantum Electrodynamics
    • 6.5 Exploring the Jaynes-Cummings Hamiltonian with Qiskit Pulse
    • 6.6 Measuring the Qubit ac-Stark Shift
    • 6.7 Hamiltonian Tomography
  • 7. Quantum Computing Labs
    • Lab 1. Quantum Circuits
    • Lab 2. Quantum Measurement
    • Lab 3. Accuracy of Quantum Phase Estimation
    • Lab 4. Iterative Quantum Phase Estimation
    • Lab 5. Scalable Shor’s Algorithm
    • Lab 6. Grover's search with an unknown number of solutions
    • Lab 7. Quantum Simulation as a Search Algorithm
  • 8. Appendix
    • 8.1 Linear Algebra
    • 8.2 Qiskit
  • 9. Games & Demos
    • Hello Qiskit Game
    • Estimating Pi Using Quantum Phase Estimation Algorithm
    • Interactivity Index

On This Page
Download as Jupyter Notebook
Contribute on Github

This page was created by The Jupyter Book Community