Measuring the Qubit ac-Stark Shift

Measuring the Qubit ac-Stark Shift

Physics Background

Let's consider a qubit with frequency $\omega_q$ strongly coupled to a resonator with frequency $\omega_r$ with $\omega_q<\omega_r$; the qubit-resonator coupling strength is $g$ and the detuning is $\Delta=\omega_q-\omega_r$. In the dispersive limit, the system can be described using the following Hamiltonian:

$H_{JC(disp)}/\hbar=\omega_r (a^\dagger a+\frac{1}{2}) + \frac{1}{2} (\omega_q + \frac{g^2}{\Delta} + \frac{2g^2}{\Delta} a^\dagger a) \sigma_z$

where $a$ and $a^\dagger$ are the raising a lowering operators of the resonator photons, and $\sigma_z$ is the Pauli-Z operator acting on the qubit. In this frame the qubit frequency

$\tilde{\omega}_q=\omega_q + \frac{g^2}{\Delta} + \frac{2g^2}{\Delta} \bar{n}$

experiences a constant Lamb shift of $g^2/\Delta$ induced by the vacuum fluctuations in the resonator, and an ac-Stark shift of $(2g^2/\Delta) \bar{n}$ where $\bar{n}=\langle a^\dagger a \rangle$ is the average number of photons present in the resonator. For more details checkout this paper. In this tutorial we investigate the ac-Stark shift of the qubit caused by the photon population in the resonator using Qiskit Pulse.

0. Getting started

We'll first get our basic dependencies set up and ready to go.

%matplotlib inline
# Importing standard Qiskit libraries and configuring account
from qiskit import QuantumCircuit, execute, Aer, IBMQ
from qiskit.compiler import transpile, assemble
from qiskit.visualization import SchedStyle
# Loading your IBM Q account(s)
provider = IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main')
backend = provider.get_backend('ibmq_armonk')
C:\Users\karam\AppData\Roaming\Python\Python37\site-packages\qiskit\providers\ibmq\ UserWarning: Timestamps in IBMQ backend properties, jobs, and job results are all now in local time instead of UTC.
  warnings.warn('Timestamps in IBMQ backend properties, jobs, and job results '

We then extract the default backend configuration and settings for the selected chip

backend_config = backend.configuration()
backend_defaults = backend.defaults()
dt=backend_config.dt  # hardware resolution
backend.configuration().parametric_pulses = [] # will allow us to send a larger waveform for our experiments
style = SchedStyle(figsize=(3, 2), title_font_size=10, axis_font_size=8) # style for displaying the pulse sequence

Next we define some helper functions that we will use for fitting and interpreting our data

from scipy.optimize import leastsq,minimize, curve_fit

# samples need to be multiples of 16 to accommodate the hardware limitations
def get_closest_multiple_of_16(num):
    return int(num + 8 ) - (int(num + 8 ) % 16)

# lorentzian function
def lorentzian(f, f0, k, a, offs):
    return a*k/(2*np.pi)/((k/2)**2+(f-f0)**2)+offs

#fit_lorentzian takes two arrays that contain the frequencies and experimental output values of each frequency respectively. 
#returns the lorentzian parameters that best fits this output of the experiment.
#popt are the fit parameters and pcov is the covariance matrix for the fit
def fit_lorentzian(freqs,values):
    popt,pcov=curve_fit(lorentzian, freqs, values, p0=p0, bounds=bounds)
    return popt,pcov

# Gaussian function
def gaussian(f, f0, sigma, a, offs):
    return a*np.exp(-(f-f0)**2/(2*sigma**2))+offs

#fit_gaussian takes two arrays that contain the frequencies and experimental output values of each frequency respectively. 
#returns the gaussian parameters that best fits this output of the experiment.
#popt are the fit parameters and pcov is the covariance matrix for the fit
def fit_gaussian(freqs,values):
    popt,pcov=curve_fit(gaussian, freqs, values, p0=p0, bounds=bounds)
    return popt,pcov

# normalize the data points to fall in the range of [0,1]
def normalize(a):
    a= a-min(a)
    return a/max(a)

1. ac-Stark Shifting the qubit

In order to ac-Stark shift the qubit we need to populate the resonator with photons using an on-resonance drive. For a drive amplitude $\epsilon$, and a resonator decay rate of $\kappa$, the number of photons in the resonator $\bar{n}=\langle a^\dagger a \rangle = \frac{\epsilon^2}{\Delta^2 +(\kappa/2)^2}$. As a reminder $\tilde{\omega}_q=\omega_q + \frac{g^2}{\Delta} + \delta \omega_q$ where the shift in frequency due to ac_Stark shift is $\delta \omega_q = \frac{2g^2}{\Delta} \bar{n}$. Since $\Delta=\omega_q-\omega_r<0$ the qubit frequency gets smaller as we increase the of photons in the resonator

from qiskit import pulse            # This is where we access all of our Pulse features!
from qiskit.pulse import Play, Acquire
from qiskit.pulse import pulse_lib
import numpy as np

qubit=0   # qubit used in our experiment

inst_sched_map = backend_defaults.instruction_schedule_map
# Get the default measurement pulse sequence
measure = inst_sched_map.get('measure', qubits=backend_config.meas_map[0])  

qubit_drive_sigma = 100e-9           #the width of the qubit spectroscopy drive
resonator_drive_sigma=10e-9          #the width of the resonator drive
drive_duration=10*qubit_drive_sigma  #the resonator drive duration

# We use a Gaussian shape pulse to drive the qubit for spectroscopy
qubit_drive = pulse_lib.gaussian(duration = get_closest_multiple_of_16(drive_duration//dt),
                             amp = .1,
                             sigma = get_closest_multiple_of_16(qubit_drive_sigma//dt),
                             name = 'qubit tone')

drive_chan = pulse.DriveChannel(qubit)   # qubit drive channel
meas_chan = pulse.MeasureChannel(qubit)  # resonator channel
acq_chan = pulse.AcquireChannel(qubit)   # readout signal acquisition channel

resonator_tone_amplitude = np.linspace(0,1,11) #change to amplitude
resonator_tone_pulses = []
for amp in resonator_tone_amplitude:
    # we use a square pulse with Gaussian rise and fall time to populate the resonator with photons
    temp_resonator_tone=pulse_lib.GaussianSquare(duration = get_closest_multiple_of_16(drive_duration//dt),
                             amp = amp,
                             sigma = get_closest_multiple_of_16(resonator_drive_sigma//dt),
                             width = get_closest_multiple_of_16((drive_duration-4*resonator_drive_sigma)//dt),
                             name = 'resonator tone')
    # pulse sequence for the experiment at different amplitudes
    with"resonator tone amplitude = {np.round(amp,2)} V") as temp_pulse:, drive_chan), meas_chan)
        pulse.delay(int(measurement_delay//dt), meas_chan)
start=4.960e9  # qubit spectroscopy start frequency
stop=4.980e9   # qubit spectroscopy stop frequency
freqs = np.linspace(start, stop, 41)-500e3
# list of qubit drive frequencies for spectroscopy
schedule_frequencies = [{drive_chan: freq , meas_chan: backend_defaults.meas_freq_est[qubit]} for freq in freqs]

Here we send our pulse sequence to the hardware

from qiskit import assemble
from import job_monitor

num_shots = 4*1024

                            schedule_los= schedule_frequencies) for i in range(len(resonator_tone_pulses))]

for experiment in resonator_tone_experiments:
    job =
/opt/conda/lib/python3.7/site-packages/qiskit/compiler/ RuntimeWarning: Dynamic rep rates not supported on this backend. rep_time will be used instead of rep_delay.
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run
Job Status: job has successfully run

And then we access the measurement data.

import matplotlib.pyplot as plt


resonator_tone_values = []
for result in resonator_tone_results:
    for i in range(len(result.results)):

plt.imshow(np.abs(resonator_tone_values[skip_idx:]), aspect='auto', origin='lower', cmap='viridis',

plt.xlabel('Qubit tone frequency [GHz]')
plt.ylabel('Resonator tone amplitude [V]')
plt.title('Qubit ac-Stark shift')

2. Qubit frequency shift and linewidth broadening

Using the Jaynes-Cummings model we expect a qubit frequency shift of $\delta \omega_q = \frac{2g^2}{\Delta} \bar{n}$. The qubit frequency experiences fluctuations due the photon shot-noise which leads to qubit linewidth broadening and a dephasing rate of $\Gamma_\phi=\frac{4 \chi^2}{\kappa} \bar{n}$

skip_idx=3  # number of points to skip

for i in range(len(resonator_tone_values)):
    if show_individual_traces:
        plt.plot(freqs/1e3, np.real(resonator_tone_values[i]))
        plt.plot(freqs/1e3, gaussian(freqs,*popt), '--')
if show_individual_traces:

center_fit=np.polyfit(resonator_tone_amplitude[skip_idx:], (center[skip_idx:]-center[0]),1)
plt.plot(resonator_tone_amplitude[skip_idx:], np.poly1d(center_fit/1e6)(resonator_tone_amplitude[skip_idx:]), '--', lw=2, color='grey')
plt.plot(resonator_tone_amplitude[skip_idx:], (center[skip_idx:]-center[0])/1e6, 'o', color='black')
plt.xlabel(r'Resonator tone amplitude [V]')
plt.ylabel(r'$\delta \omega_q (MHz)$')

fwhm_fit=np.polyfit(resonator_tone_amplitude[skip_idx:], np.array(fwhm[skip_idx:]),1)
plt.plot(resonator_tone_amplitude[skip_idx:], np.poly1d(fwhm_fit/1e6)(resonator_tone_amplitude[skip_idx:]), '--', lw=2, color='orange')
plt.plot(resonator_tone_amplitude[skip_idx:], np.array(fwhm[skip_idx:])/1e6, 'o', color='red')
plt.xlabel(r'Resonator tone amplitude [V]')
plt.ylabel(r'FWHM (MHz)')

In this chapter we discuss the ac-Stark shift that the qubit experiences due to the presence of photons in the resonator. We use Qiskit Pulse to measure the qubit frequency shift and linewidth broadening

import qiskit
{'qiskit-terra': '0.16.0',
 'qiskit-aer': '0.7.0',
 'qiskit-ignis': '0.5.0',
 'qiskit-ibmq-provider': '0.11.0',
 'qiskit-aqua': '0.8.0',
 'qiskit': '0.23.0'}