Turkish
Diller
English
Bengali
French
Hindi
Japanese
Korean
Russian
Spanish
Tamil
Turkish



TorchRuntimeClient

class TorchRuntimeClient(model, optimizer, loss_func, epochs=10, shots=1024, measurement_error_mitigation=False, provider=None, backend=None)[kaynak]

Bases: object

Deprecation: TorchRuntimeClient

The Qiskit Machine Learning Torch runtime client to call the Torch runtime.

Parametreler:
  • model (torch.nn.Module) – A PyTorch module to be trained.

  • optimizer (torch.optim.Optimizer) – A PyTorch optimizer for the model parameters.

  • loss_func (Callable) – A PyTorch-compatible loss function. Can be one of the official PyTorch loss functions from torch.nn.loss or a custom function defined by the user.

  • epochs (int) – The maximum number of training epochs. By default, 10.

  • shots (int) – The number of shots for the quantum backend. By default, 1024.

  • measurement_error_mitigation (bool) – Whether or not to use measurement error mitigation.

  • default (By) –

  • False.

  • provider (Provider | None) – IBMQ provider that supports runtime services.

  • backend (Backend | None) – Selected quantum backend.

Attributes

loss_func

Return the loss function.

measurement_error_mitigation

Returns whether or not to use measurement error mitigation.

model

Return the model.

optimizer

Return the optimizer.

provider

Return the provider.

shots

Return the number of shots.

Methods

fit(train_loader[, val_loader, hooks, ...])

Train the model using the Torch Train Runtime ('torch-train').

predict(data_loader)

Perform prediction on the passed data using the trained model and the Torch Infer Runtime ('torch-infer').

score(data_loader, score_func)

Calculate a score using the trained model and the Torch Infer Runtime ('torch-infer').