QuantumGenerator¶
- class QuantumGenerator(bounds, num_qubits, generator_circuit=None, init_params=None, optimizer=None, gradient_function=None, snapshot_dir=None)[kaynak]¶
Bases:
GenerativeNetwork
Quantum Generator.
The quantum generator is a parametrized quantum circuit which can be trained with the
QGAN
algorithm to generate a quantum state which approximates the probability distribution of given training data. At the beginning of the training the parameters will be set randomly, thus, the output will is random. Throughout the training the quantum generator learns to represent the target distribution. Eventually, the trained generator can be used for state preparation e.g. in QAE.- Parametreler:
bounds (ndarray) – k min/max data values [[min_1,max_1],…,[min_k,max_k]], given input data dim k
num_qubits (List[int] | ndarray) – k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,…, n_k]
generator_circuit (QuantumCircuit | None) – a QuantumCircuit implementing the generator.
init_params (List[float] | ndarray | None) – 1D numpy array or list, Initialization for the generator’s parameters.
optimizer (Optimizer | None) – optimizer to be used for the training of the generator
gradient_function (Callable | Gradient | None) – A Gradient object, or a function returning partial derivatives of the loss function w.r.t. the generator variational params.
snapshot_dir (str | None) – str or None, if not None save the optimizer’s parameter after every update step to the given directory
- Harekete geçirir:
QiskitMachineLearningError – Set multivariate variational distribution to represent multivariate data
Attributes
Get discriminator.
Get optimizer.
Get parameter values from the quantum generator
Get seed.
Methods
construct_circuit
([params])Construct generator circuit.
get_output
(quantum_instance[, params, shots])Get classical data samples from the generator.
loss
(x, weights)Loss function for training the generator's parameters.
train
([quantum_instance, shots])Perform one training step w.r.t to the generator's parameters