Linguaggi
English
Bengali
French
Hindi
Italian
Japanese
Korean
Malayalam
Russian
Spanish
Tamil
Turkish
Vietnamese

Codice sorgente per qiskit_machine_learning.neural_networks.circuit_qnn

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""A Sampling Neural Network based on a given quantum circuit."""
import logging
from numbers import Integral
from typing import Tuple, Union, List, Callable, Optional, cast, Iterable

import numpy as np

from scipy.sparse import coo_matrix

from qiskit import QuantumCircuit
from qiskit.circuit import Parameter
from qiskit.opflow import Gradient, CircuitSampler, StateFn, OpflowError, OperatorBase
from qiskit.providers import Backend
from qiskit.utils import QuantumInstance, deprecate_function

import qiskit_machine_learning.optionals as _optionals
from .sampling_neural_network import SamplingNeuralNetwork
from ..exceptions import QiskitMachineLearningError, QiskitError

if _optionals.HAS_SPARSE:
    # pylint: disable=import-error
    from sparse import SparseArray
else:

    class SparseArray:  # type: ignore
        """Empty SparseArray class
        Replacement if sparse.SparseArray is not present.
        """

        pass


logger = logging.getLogger(__name__)


[documenti]class CircuitQNN(SamplingNeuralNetwork): """Pending deprecation: A sampling neural network based on a given quantum circuit.""" @deprecate_function( "The CircuitQNN class has been superseded by the " "qiskit_machine_learning.neural_networks.SamplerQNN " "This class will be deprecated in a future release and subsequently " "removed after that.", stacklevel=3, category=PendingDeprecationWarning, ) def __init__( self, circuit: QuantumCircuit, input_params: Optional[List[Parameter]] = None, weight_params: Optional[List[Parameter]] = None, sparse: bool = False, sampling: bool = False, interpret: Optional[Callable[[int], Union[int, Tuple[int, ...]]]] = None, output_shape: Union[int, Tuple[int, ...]] = None, gradient: Gradient = None, quantum_instance: Optional[Union[QuantumInstance, Backend]] = None, input_gradients: bool = False, ) -> None: """ Args: circuit: The parametrized quantum circuit that generates the samples of this network. There will be an attempt to transpile this circuit and cache the transpiled circuit for subsequent usages by the network. If for some reasons the circuit can't be transpiled, e.g. it originates from :class:`~qiskit_machine_learning.circuit.library.RawFeatureVector`, the circuit will be transpiled every time it is required to be executed and only when all parameters are bound. This may impact overall performance on the network. input_params: The parameters of the circuit corresponding to the input. weight_params: The parameters of the circuit corresponding to the trainable weights. sparse: Returns whether the output is sparse or not. sampling: Determines whether the network returns a batch of samples or (possibly sparse) array of probabilities in its forward pass. In case of probabilities, the backward pass returns the probability gradients, while it returns ``(None, None)`` in the case of samples. Note that ``sampling==True`` will always result in a dense return array independent of the other settings. interpret: A callable that maps the measured integer to another unsigned integer or tuple of unsigned integers. These are used as new indices for the (potentially sparse) output array. If this is used, and ``sampling==False``, the output shape of the output needs to be given as a separate argument. If no interpret function is passed, then an identity function will be used by this neural network. output_shape: The output shape of the custom interpretation, only used in the case where an interpret function is provided and ``sampling==False``. Note that in the remaining cases, the output shape is automatically inferred by: ``2^num_qubits`` if ``sampling==False`` and ``interpret==None``, ``(num_samples,1)`` if ``sampling==True`` and ``interpret==None``, and ``(num_samples, interpret_shape)`` if ``sampling==True`` and an interpret function is provided. gradient: The gradient converter to be used for the probability gradients. quantum_instance: The quantum instance to evaluate the circuits. Note that if ``sampling==True``, a statevector simulator is not a valid backend for the quantum instance. input_gradients: Determines whether to compute gradients with respect to input data. Note that this parameter is ``False`` by default, and must be explicitly set to ``True`` for a proper gradient computation when using ``TorchConnector``. Raises: QiskitMachineLearningError: if ``interpret`` is passed without ``output_shape``. """ self._input_params = list(input_params or []) self._weight_params = list(weight_params or []) # initialize gradient properties self.input_gradients = input_gradients sparse = False if sampling else sparse if sparse: _optionals.HAS_SPARSE.require_now("DOK") # copy circuit and add measurements in case non are given # TODO: need to be able to handle partial measurements! (partial trace...) self._circuit = circuit.copy() # we have not transpiled the circuit yet self._circuit_transpiled = False # these original values may be re-used when a quantum instance is set, # but initially it was None self._original_output_shape = output_shape # next line is required by pylint only self._interpret = interpret self._original_interpret = interpret # we need this property in _set_quantum_instance despite it is initialized # in the super class later on, review of SamplingNN is required. self._sampling = sampling # set quantum instance and derive target output_shape and interpret self._set_quantum_instance(quantum_instance, output_shape, interpret) # init super class super().__init__( len(self._input_params), len(self._weight_params), sparse, sampling, self._output_shape, self._input_gradients, ) self._original_circuit = circuit # use given gradient or default self._gradient = gradient or Gradient() def _construct_gradient_circuit(self): if self._gradient_circuit_constructed: return self._gradient_circuit: OperatorBase = None try: # todo: avoid copying the circuit grad_circuit = self._original_circuit.copy() grad_circuit.remove_final_measurements() # ideally this would not be necessary if self._input_gradients: params = self._input_params + self._weight_params else: params = self._weight_params self._gradient_circuit = self._gradient.convert(StateFn(grad_circuit), params) except (ValueError, TypeError, OpflowError, QiskitError): logger.warning("Cannot compute gradient operator! Continuing without gradients!") self._gradient_circuit_constructed = True def _compute_output_shape(self, interpret, output_shape, sampling) -> Tuple[int, ...]: """Validate and compute the output shape.""" # a safety check cause we use quantum instance below if self._quantum_instance is None: raise QiskitMachineLearningError( "A quantum instance is required to compute output shape!" ) # this definition is required by mypy output_shape_: Tuple[int, ...] = (-1,) # todo: move sampling code to the super class if sampling: if output_shape is not None: # Warn user that output_shape parameter will be ignored logger.warning( "In sampling mode, output_shape will be automatically inferred " "from the number of samples and interpret function, if provided." ) num_samples = self._quantum_instance.run_config.shots if interpret is not None: ret = interpret(0) # infer shape from function result = np.array(ret) if len(result.shape) == 0: output_shape_ = (num_samples, 1) else: output_shape_ = (num_samples, *result.shape) else: output_shape_ = (num_samples, 1) else: if interpret is not None: if output_shape is None: raise QiskitMachineLearningError( "No output shape given, but required in case of custom interpret!" ) if isinstance(output_shape, Integral): output_shape = int(output_shape) output_shape_ = (output_shape,) else: output_shape_ = output_shape else: if output_shape is not None: # Warn user that output_shape parameter will be ignored logger.warning( "No interpret function given, output_shape will be automatically " "determined as 2^num_qubits." ) output_shape_ = (2**self._circuit.num_qubits,) # final validation output_shape_ = self._validate_output_shape(output_shape_) return output_shape_ @property def circuit(self) -> QuantumCircuit: """Returns the underlying quantum circuit.""" return self._circuit @property def input_params(self) -> List: """Returns the list of input parameters.""" return self._input_params @property def weight_params(self) -> List: """Returns the list of trainable weights parameters.""" return self._weight_params @property def interpret(self) -> Optional[Callable[[int], Union[int, Tuple[int, ...]]]]: """Returns interpret function to be used by the neural network. If it is not set in the constructor or can not be implicitly derived (e.g. a quantum instance is not provided), then ``None`` is returned.""" return self._interpret @property def quantum_instance(self) -> QuantumInstance: """Returns the quantum instance to evaluate the circuit.""" return self._quantum_instance @quantum_instance.setter def quantum_instance(self, quantum_instance: Optional[Union[QuantumInstance, Backend]]) -> None: """Sets the quantum instance to evaluate the circuit and make sure circuit has measurements or not depending on the type of backend used. """ self._set_quantum_instance( quantum_instance, self._original_output_shape, self._original_interpret ) def _set_quantum_instance( self, quantum_instance: Optional[Union[QuantumInstance, Backend]], output_shape: Union[int, Tuple[int, ...]], interpret: Optional[Callable[[int], Union[int, Tuple[int, ...]]]], ) -> None: """ Internal method to set a quantum instance and compute/initialize internal properties such as an interpret function, output shape and a sampler. Args: quantum_instance: A quantum instance to set. output_shape: An output shape of the custom interpretation. interpret: A callable that maps the measured integer to another unsigned integer or tuple of unsigned integers. """ if isinstance(quantum_instance, Backend): quantum_instance = QuantumInstance(quantum_instance) self._quantum_instance = quantum_instance if self._quantum_instance is not None: # add measurements in case none are given if self._quantum_instance.is_statevector: if len(self._circuit.clbits) > 0: self._circuit.remove_final_measurements() elif len(self._circuit.clbits) == 0: self._circuit.measure_all() # set interpret and compute output shape self.set_interpret(interpret, output_shape) # prepare sampler self._sampler = CircuitSampler(self._quantum_instance, param_qobj=False, caching="all") # transpile the QNN circuit try: self._circuit = self._quantum_instance.transpile( self._circuit, pass_manager=self._quantum_instance.unbound_pass_manager )[0] self._circuit_transpiled = True except QiskitError: # likely it is caused by RawFeatureVector, we just ignore this error and # transpile circuits when it is required. self._circuit_transpiled = False else: self._output_shape = output_shape @property def input_gradients(self) -> bool: """Returns whether gradients with respect to input data are computed by this neural network in the ``backward`` method or not. By default such gradients are not computed.""" return self._input_gradients @input_gradients.setter def input_gradients(self, input_gradients: bool) -> None: """Turn on/off gradient with respect to input data.""" self._input_gradients = input_gradients # reset gradient circuit self._gradient_circuit = None self._gradient_circuit_constructed = False
[documenti] def set_interpret( self, interpret: Optional[Callable[[int], Union[int, Tuple[int, ...]]]], output_shape: Union[int, Tuple[int, ...]] = None, ) -> None: """Change 'interpret' and corresponding 'output_shape'. If self.sampling==True, the output _shape does not have to be set and is inferred from the interpret function. Otherwise, the output_shape needs to be given. Args: interpret: A callable that maps the measured integer to another unsigned integer or tuple of unsigned integers. See constructor for more details. output_shape: The output shape of the custom interpretation, only used in the case where an interpret function is provided and ``sampling==False``. See constructor for more details. """ # save original values self._original_output_shape = output_shape self._original_interpret = interpret # derive target values to be used in computations self._output_shape = self._compute_output_shape(interpret, output_shape, self._sampling) self._interpret = interpret if interpret is not None else lambda x: x
def _sample( self, input_data: Optional[np.ndarray], weights: Optional[np.ndarray] ) -> np.ndarray: self._check_quantum_instance("samples") if self._quantum_instance.is_statevector: raise QiskitMachineLearningError("Sampling does not work with statevector simulator!") # evaluate operator orig_memory = self._quantum_instance.backend_options.get("memory") self._quantum_instance.backend_options["memory"] = True circuits = [] # iterate over samples, each sample is an element of a batch num_samples = input_data.shape[0] for i in range(num_samples): param_values = { input_param: input_data[i, j] for j, input_param in enumerate(self._input_params) } param_values.update( {weight_param: weights[j] for j, weight_param in enumerate(self._weight_params)} ) circuits.append(self._circuit.bind_parameters(param_values)) if self._quantum_instance.bound_pass_manager is not None: circuits = self._quantum_instance.transpile( circuits, pass_manager=self._quantum_instance.bound_pass_manager ) result = self._quantum_instance.execute(circuits, had_transpiled=self._circuit_transpiled) # set the memory setting back self._quantum_instance.backend_options["memory"] = orig_memory # return samples samples = np.zeros((num_samples, *self._output_shape)) # collect them from all executed circuits for i, circuit in enumerate(circuits): memory = result.get_memory(circuit) for j, b in enumerate(memory): samples[i, j, :] = self._interpret(int(b, 2)) return samples def _probabilities( self, input_data: Optional[np.ndarray], weights: Optional[np.ndarray] ) -> Union[np.ndarray, SparseArray]: self._check_quantum_instance("probabilities") # evaluate operator circuits = [] num_samples = input_data.shape[0] for i in range(num_samples): param_values = { input_param: input_data[i, j] for j, input_param in enumerate(self._input_params) } param_values.update( {weight_param: weights[j] for j, weight_param in enumerate(self._weight_params)} ) circuits.append(self._circuit.bind_parameters(param_values)) if self._quantum_instance.bound_pass_manager is not None: circuits = self._quantum_instance.transpile( circuits, pass_manager=self._quantum_instance.bound_pass_manager ) result = self._quantum_instance.execute(circuits, had_transpiled=self._circuit_transpiled) # initialize probabilities if self._sparse: # pylint: disable=import-error from sparse import DOK prob = DOK((num_samples, *self._output_shape)) else: prob = np.zeros((num_samples, *self._output_shape)) for i, circuit in enumerate(circuits): counts = result.get_counts(circuit) shots = sum(counts.values()) # evaluate probabilities for b, v in counts.items(): key = self._interpret(int(b, 2)) if isinstance(key, Integral): key = (cast(int, key),) key = (i, *key) # type: ignore prob[key] += v / shots if self._sparse: return prob.to_coo() else: return prob def _probability_gradients( self, input_data: Optional[np.ndarray], weights: Optional[np.ndarray] ) -> Tuple[Union[np.ndarray, SparseArray], Union[np.ndarray, SparseArray]]: self._check_quantum_instance("probability gradients") self._construct_gradient_circuit() # check whether gradient circuit could be constructed if self._gradient_circuit is None: return None, None num_samples = input_data.shape[0] # initialize empty gradients input_grad = None # by default we don't have data gradients if self._sparse: # pylint: disable=import-error from sparse import DOK if self._input_gradients: input_grad = DOK((num_samples, *self._output_shape, self._num_inputs)) weights_grad = DOK((num_samples, *self._output_shape, self._num_weights)) else: if self._input_gradients: input_grad = np.zeros((num_samples, *self._output_shape, self._num_inputs)) weights_grad = np.zeros((num_samples, *self._output_shape, self._num_weights)) param_values = { input_param: input_data[:, j] for j, input_param in enumerate(self._input_params) } param_values.update( { weight_param: np.full(num_samples, weights[j]) for j, weight_param in enumerate(self._weight_params) } ) converted_op = self._sampler.convert(self._gradient_circuit, param_values) # if statement is a workaround for https://github.com/Qiskit/qiskit-terra/issues/7608 if len(converted_op.parameters) > 0: # create an list of parameter bindings, each element corresponds to a sample in the dataset param_bindings = [ {param: param_values[i] for param, param_values in param_values.items()} for i in range(num_samples) ] grad = [] # iterate over gradient vectors and bind the correct leftover parameters for g_i, param_i in zip(converted_op, param_bindings): # bind or re-bind remaining values and evaluate the gradient grad.append(g_i.bind_parameters(param_i).eval()) else: grad = converted_op.eval() if self._input_gradients: num_grad_vars = self._num_inputs + self._num_weights else: num_grad_vars = self._num_weights # construct gradients for sample in range(num_samples): for i in range(num_grad_vars): coo_grad = coo_matrix(grad[sample][i]) # this works for sparse and dense case # get index for input or weights gradients if self._input_gradients: grad_index = i if i < self._num_inputs else i - self._num_inputs else: grad_index = i for _, k, val in zip(coo_grad.row, coo_grad.col, coo_grad.data): # interpret integer and construct key key = self._interpret(k) if isinstance(key, Integral): key = (sample, int(key), grad_index) else: # if key is an array-type, cast to hashable tuple key = tuple(cast(Iterable[int], key)) key = (sample, *key, grad_index) # store value for inputs or weights gradients if self._input_gradients: # we compute input gradients first if i < self._num_inputs: input_grad[key] += np.real(val) else: weights_grad[key] += np.real(val) else: weights_grad[key] += np.real(val) # end of for each sample if self._sparse: if self._input_gradients: input_grad = input_grad.to_coo() weights_grad = weights_grad.to_coo() return input_grad, weights_grad def _check_quantum_instance(self, feature: str): if self._quantum_instance is None: raise QiskitMachineLearningError( f"Evaluation of {feature} requires a quantum instance!" )