Shortcuts

qiskit.extensions.HamiltonianGate

class HamiltonianGate(data, time, label=None)[source]

Class for representing evolution by a Hermitian Hamiltonian operator as a gate. This gate resolves to a UnitaryGate U(t) = exp(-1j * t * H), which can be decomposed into basis gates if it is 2 qubits or less, or simulated directly in Aer for more qubits.

Create a gate from a hamiltonian operator and evolution time parameter t

Parameters
  • data (matrix or Operator) – a hermitian operator.

  • time (float) – time evolution parameter.

  • label (str) – unitary name for backend [Default: None].

Raises

ExtensionError – if input data is not an N-qubit unitary operator.

__init__(data, time, label=None)[source]

Create a gate from a hamiltonian operator and evolution time parameter t

Parameters
  • data (matrix or Operator) – a hermitian operator.

  • time (float) – time evolution parameter.

  • label (str) – unitary name for backend [Default: None].

Raises

ExtensionError – if input data is not an N-qubit unitary operator.

Methods

__init__(data, time[, label])

Create a gate from a hamiltonian operator and evolution time parameter t

add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

adjoint()

Return the adjoint of the unitary.

assemble()

Assemble a QasmQobjInstruction

broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

c_if(classical, val)

Add classical condition on register classical and value val.

conjugate()

Return the conjugate of the Hamiltonian.

control([num_ctrl_qubits, label, ctrl_state])

Return controlled version of gate.

copy([name])

Copy of the instruction.

inverse()

Return the adjoint of the unitary.

is_parameterized()

Return True .IFF.

mirror()

DEPRECATED: use instruction.reverse_ops().

power(exponent)

Creates a unitary gate as gate^exponent.

qasm()

Raise an error, as QASM is not defined for the HamiltonianGate.

repeat(n)

Creates an instruction with gate repeated n amount of times.

reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

to_matrix()

Return matrix for the unitary.

transpose()

Return the transpose of the Hamiltonian.

validate_parameter(parameter)

Hamiltonian parameter has to be an ndarray, operator or float.

Attributes

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return gate label

params

return instruction params.

unit

Get the time unit of duration.

add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

adjoint()[source]

Return the adjoint of the unitary.

assemble()

Assemble a QasmQobjInstruction

Return type

Instruction

broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
    
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
    
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
    
Parameters
  • qargs (List) – List of quantum bit arguments.

  • cargs (List) – List of classical bit arguments.

Return type

Tuple[List, List]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if(classical, val)

Add classical condition on register classical and value val.

conjugate()[source]

Return the conjugate of the Hamiltonian.

control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return controlled version of gate. See ControlledGate for usage.

Parameters
  • num_ctrl_qubits (Optional[int]) – number of controls to add to gate (default=1)

  • label (Optional[str]) – optional gate label

  • ctrl_state (Union[int, str, None]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.

Returns

Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.

Return type

qiskit.circuit.ControlledGate

Raises

QiskitError – unrecognized mode or invalid ctrl_state

copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name

updated if it was provided

Return type

qiskit.circuit.Instruction

property decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

property definition

Return definition in terms of other basic gates.

property duration

Get the duration.

inverse()[source]

Return the adjoint of the unitary.

is_parameterized()

Return True .IFF. instruction is parameterized else False

property label

Return gate label

Return type

str

mirror()

DEPRECATED: use instruction.reverse_ops().

Returns

a new instruction with sub-instructions

reversed.

Return type

qiskit.circuit.Instruction

property params

return instruction params.

power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

qiskit.extensions.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm()[source]

Raise an error, as QASM is not defined for the HamiltonianGate.

repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Returns

a new instruction with

sub-instructions reversed.

Return type

qiskit.circuit.Instruction

to_matrix()[source]

Return matrix for the unitary.

transpose()[source]

Return the transpose of the Hamiltonian.

property unit

Get the time unit of duration.

validate_parameter(parameter)[source]

Hamiltonian parameter has to be an ndarray, operator or float.

You are viewing lang: English
Languages
English
Japanese
German
Korean