SXdgGate

class SXdgGate(label=None)[source]

The inverse single-qubit Sqrt(X) gate.

\[\begin{split}\sqrt{X}^{\dagger} = \frac{1}{2} \begin{pmatrix} 1 - i & 1 + i \\ 1 + i & 1 - i \end{pmatrix}\end{split}\]

Note

A global phase difference exists between the definitions of \(RX(-\pi/2)\) and \(\sqrt{X}^{\dagger}\).

\[\begin{split}RX(-\pi/2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} = e^{-i pi/4} \sqrt{X}^{\dagger}\end{split}\]

Create new SXdg gate.

Attributes

SXdgGate.decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

SXdgGate.definition

Return definition in terms of other basic gates.

SXdgGate.label

Return gate label

SXdgGate.params

return instruction params.

Methods

SXdgGate.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

SXdgGate.assemble()

Assemble a QasmQobjInstruction

SXdgGate.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

SXdgGate.c_if(classical, val)

Add classical condition on register classical and value val.

SXdgGate.control([num_ctrl_qubits, label, …])

Return controlled version of gate.

SXdgGate.copy([name])

Copy of the instruction.

SXdgGate.inverse()

Return inverse SXdg gate (i.e.

SXdgGate.is_parameterized()

Return True .IFF.

SXdgGate.mirror()

DEPRECATED: use instruction.reverse_ops().

SXdgGate.power(exponent)

Creates a unitary gate as gate^exponent.

SXdgGate.qasm()

Return a default OpenQASM string for the instruction.

SXdgGate.repeat(n)

Creates an instruction with gate repeated n amount of times.

SXdgGate.reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

SXdgGate.to_matrix()

Return a numpy.array for the SXdg gate.