IQP¶
- class IQP(interactions)[source]¶
Bases:
qiskit.circuit.quantumcircuit.QuantumCircuit
Instantaneous quantum polynomial (IQP) circuit.
The circuit consists of a column of Hadamard gates, a column of powers of T gates, a sequence of powers of CS gates (up to \(\frac{n^2-n}{2}\) of them), and a final column of Hadamard gates, as introduced in [1].
The circuit is parameterized by an n x n interactions matrix. The powers of each T gate are given by the diagonal elements of the interactions matrix. The powers of the CS gates are given by the upper triangle of the interactions matrix.
Reference Circuit:
Expanded Circuit:
References:
[1] M. J. Bremner et al. Average-case complexity versus approximate simulation of commuting quantum computations, Phys. Rev. Lett. 117, 080501 (2016). arXiv:1504.07999
Create IQP circuit.
- Parameters
interactions (
Union
[List
,array
]) – input n-by-n symmetric matrix.- Raises
CircuitError – if the inputs is not as symmetric matrix.
Attributes
- ancillas¶
Returns a list of ancilla bits in the order that the registers were added.
- Return type
List
[AncillaQubit
]
- calibrations¶
Return calibration dictionary.
- The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
- Return type
dict
- clbits¶
Returns a list of classical bits in the order that the registers were added.
- Return type
List
[Clbit
]
- data¶
Return the circuit data (instructions and context).
- Returns
a list-like object containing the tuples for the circuit’s data.
Each tuple is in the format
(instruction, qargs, cargs)
, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.- Return type
QuantumCircuitData
- extension_lib = 'include "qelib1.inc";'¶
- global_phase¶
Return the global phase of the circuit in radians.
- Return type
Union
[ParameterExpression
,float
]
- header = 'OPENQASM 2.0;'¶
- instances = 9¶
- metadata¶
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.- Return type
dict
- num_ancillas¶
Return the number of ancilla qubits.
- Return type
int
- num_clbits¶
Return number of classical bits.
- Return type
int
- num_parameters¶
Convenience function to get the number of parameter objects in the circuit.
- Return type
int
- num_qubits¶
Return number of qubits.
- Return type
int
- parameters¶
Convenience function to get the parameters defined in the parameter table.
- Return type
ParameterView
- prefix = 'circuit'¶