DraperQFTAdder¶
- class DraperQFTAdder(num_state_qubits, kind='fixed', name='DraperQFTAdder')[source]¶
Bases:
qiskit.circuit.library.arithmetic.adders.adder.Adder
A circuit that uses QFT to perform in-place addition on two qubit registers.
For registers with \(n\) qubits, the QFT adder can perform addition modulo \(2^n\) (with
kind="fixed"
) or ordinary addition by adding a carry qubits (withkind="half"
).As an example, a non-fixed_point QFT adder circuit that performs addition on two 2-qubit sized registers is as follows:
a_0: ─────────■──────■────────────────────────■──────────────── │ │ │ a_1: ─────────┼──────┼────────■──────■────────┼──────────────── ┌──────┐ │P(π) │ │ │ │ ┌───────┐ b_0: ┤0 ├─■──────┼────────┼──────┼────────┼───────┤0 ├ │ │ │P(π/2) │P(π) │ │ │ │ b_1: ┤1 qft ├────────■────────■──────┼────────┼───────┤1 iqft ├ │ │ │P(π/2) │P(π/4) │ │ cout_0: ┤2 ├────────────────────────■────────■───────┤2 ├ └──────┘ └───────┘
References:
[1] T. G. Draper, Addition on a Quantum Computer, 2000. arXiv:quant-ph/0008033
[2] Ruiz-Perez et al., Quantum arithmetic with the Quantum Fourier Transform, 2017. arXiv:1411.5949
[3] Vedral et al., Quantum Networks for Elementary Arithmetic Operations, 1995. arXiv:quant-ph/9511018
- Parameters
num_state_qubits (
int
) – The number of qubits in either input register for state \(|a\rangle\) or \(|b\rangle\). The two input registers must have the same number of qubits.kind (
str
) – The kind of adder, can be'half'
for a half adder or'fixed'
for a fixed-sized adder. A half adder contains a carry-out to represent the most-significant bit, but the fixed-sized adder doesn’t and hence performs addition modulo2 ** num_state_qubits
.name (
str
) – The name of the circuit object.
- Raises
ValueError – If
num_state_qubits
is lower than 1.
Attributes
- ancillas¶
Returns a list of ancilla bits in the order that the registers were added.
- Return type
List
[AncillaQubit
]
- calibrations¶
Return calibration dictionary.
- The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
- Return type
dict
- clbits¶
Returns a list of classical bits in the order that the registers were added.
- Return type
List
[Clbit
]
- data¶
Return the circuit data (instructions and context).
- Returns
a list-like object containing the tuples for the circuit’s data.
Each tuple is in the format
(instruction, qargs, cargs)
, where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.- Return type
QuantumCircuitData
- extension_lib = 'include "qelib1.inc";'¶
- global_phase¶
Return the global phase of the circuit in radians.
- Return type
Union
[ParameterExpression
,float
]
- header = 'OPENQASM 2.0;'¶
- instances = 9¶
- metadata¶
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.- Return type
dict
- num_ancillas¶
Return the number of ancilla qubits.
- Return type
int
- num_clbits¶
Return number of classical bits.
- Return type
int
- num_parameters¶
Convenience function to get the number of parameter objects in the circuit.
- Return type
int
- num_qubits¶
Return number of qubits.
- Return type
int
- num_state_qubits¶
The number of state qubits, i.e. the number of bits in each input register.
- Return type
int
- Returns
The number of state qubits.
- parameters¶
Convenience function to get the parameters defined in the parameter table.
- Return type
ParameterView
- prefix = 'circuit'¶