Shortcuts

qiskit.circuit.classicalfunction.ClassicalFunction

class ClassicalFunction(source, name=None)[source]

Represent a classical function function and its logic network.

Creates a ClassicalFunction from Python source code in source.

The code should be a single function with types.

Parameters
  • source (str) – Python code with type hints.

  • name (str) – Optional. Default: “classicalfunction”. ClassicalFunction name.

Raises
  • ImportError – If tweedledum is not installed.

  • QiskitError – If source is not a string.

__init__(source, name=None)[source]

Creates a ClassicalFunction from Python source code in source.

The code should be a single function with types.

Parameters
  • source (str) – Python code with type hints.

  • name (str) – Optional. Default: “classicalfunction”. ClassicalFunction name.

Raises
  • ImportError – If tweedledum is not installed.

  • QiskitError – If source is not a string.

Methods

__init__(source[, name])

Creates a ClassicalFunction from Python source code in source.

add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble()

Assemble a QasmQobjInstruction

broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

c_if(classical, val)

Add classical condition on register classical and value val.

compile()

Parses and creates the logical circuit

control([num_ctrl_qubits, label, ctrl_state])

Return controlled version of gate.

copy([name])

Copy of the instruction.

inverse()

Invert this instruction.

is_parameterized()

Return True .IFF.

mirror()

DEPRECATED: use instruction.reverse_ops().

power(exponent)

Creates a unitary gate as gate^exponent.

qasm()

Return a default OpenQASM string for the instruction.

repeat(n)

Creates an instruction with gate repeated n amount of times.

reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

simulate()

Runs tweedledum.simulate on the logic network.

synth([registerless])

Synthesis the logic network into a QuantumCircuit.

to_matrix()

Return a Numpy.array for the gate unitary matrix.

validate_parameter(parameter)

Gate parameters should be int, float, or ParameterExpression

Attributes

args

Returns the classicalfunction arguments

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return gate label

network

Returns the logical network

params

return instruction params.

qregs

The list of qregs used by the classicalfunction

scopes

Returns the scope dict

types

Dumps a list of scopes with their variables and types.

unit

Get the time unit of duration.

add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

property args

Returns the classicalfunction arguments

assemble()

Assemble a QasmQobjInstruction

Return type

Instruction

broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
    
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
    
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
    
Parameters
  • qargs (List) – List of quantum bit arguments.

  • cargs (List) – List of classical bit arguments.

Return type

Tuple[List, List]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if(classical, val)

Add classical condition on register classical and value val.

compile()[source]

Parses and creates the logical circuit

control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return controlled version of gate. See ControlledGate for usage.

Parameters
  • num_ctrl_qubits (Optional[int]) – number of controls to add to gate (default=1)

  • label (Optional[str]) – optional gate label

  • ctrl_state (Union[int, str, None]) – The control state in decimal or as a bitstring (e.g. ‘111’). If None, use 2**num_ctrl_qubits-1.

Returns

Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.

Return type

qiskit.circuit.ControlledGate

Raises

QiskitError – unrecognized mode or invalid ctrl_state

copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name

updated if it was provided

Return type

qiskit.circuit.Instruction

property decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

property definition

Return definition in terms of other basic gates.

property duration

Get the duration.

inverse()

Invert this instruction.

If the instruction is composite (i.e. has a definition), then its definition will be recursively inverted.

Special instructions inheriting from Instruction can implement their own inverse (e.g. T and Tdg, Barrier, etc.)

Returns

a fresh instruction for the inverse

Return type

qiskit.circuit.Instruction

Raises

CircuitError – if the instruction is not composite and an inverse has not been implemented for it.

is_parameterized()

Return True .IFF. instruction is parameterized else False

property label

Return gate label

Return type

str

mirror()

DEPRECATED: use instruction.reverse_ops().

Returns

a new instruction with sub-instructions

reversed.

Return type

qiskit.circuit.Instruction

property network

Returns the logical network

property params

return instruction params.

power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

qiskit.extensions.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm()

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

property qregs

The list of qregs used by the classicalfunction

repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Returns

a new instruction with

sub-instructions reversed.

Return type

qiskit.circuit.Instruction

property scopes

Returns the scope dict

simulate()[source]

Runs tweedledum.simulate on the logic network.

synth(registerless=True)[source]

Synthesis the logic network into a QuantumCircuit.

Parameters
  • registerless (bool) – Default True. If False uses the parameter names to create

  • with those names. Otherwise (registers) –

  • a circuit with a flat quantum register. (creates) –

Returns

A circuit implementing the logic network.

Return type

QuantumCircuit

to_matrix()

Return a Numpy.array for the gate unitary matrix.

Raises

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

Return type

ndarray

property types

Dumps a list of scopes with their variables and types.

Returns

A list of scopes as dicts, where key is the variable name and value is its type.

Return type

list(dict)

property unit

Get the time unit of duration.

validate_parameter(parameter)

Gate parameters should be int, float, or ParameterExpression

You are viewing lang: English
Languages
English
Japanese
German
Korean