Delay#

class qiskit.circuit.Delay(duration, unit='dt')[source]#

Bases: Instruction

Do nothing and just delay/wait/idle for a specified duration.

Create new delay instruction.

Attributes

base_class#

Get the base class of this instruction. This is guaranteed to be in the inheritance tree of self.

The β€œbase class” of an instruction is the lowest class in its inheritance tree that the object should be considered entirely compatible with for _all_ circuit applications. This typically means that the subclass is defined purely to offer some sort of programmer convenience over the base class, and the base class is the β€œtrue” class for a behavioural perspective. In particular, you should not override base_class if you are defining a custom version of an instruction that will be implemented differently by hardware, such as an alternative measurement strategy, or a version of a parametrised gate with a particular set of parameters for the purposes of distinguishing it in a Target from the full parametrised gate.

This is often exactly equivalent to type(obj), except in the case of singleton instances of standard-library instructions. These singleton instances are special subclasses of their base class, and this property will return that base. For example:

>>> isinstance(XGate(), XGate)
True
>>> type(XGate()) is XGate
False
>>> XGate().base_class is XGate
True

In general, you should not rely on the precise class of an instruction; within a given circuit, it is expected that Instruction.name should be a more suitable discriminator in most situations.

condition#

The classical condition on the instruction.

condition_bits#

Get Clbits in condition.

decompositions#

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition#

Return definition in terms of other basic gates.

duration#

Get the duration of this delay.

label#

Return instruction label

mutable#

Is this instance is a mutable unique instance or not.

If this attribute is False the gate instance is a shared singleton and is not mutable.

name#

Return the name.

num_clbits#

Return the number of clbits.

num_qubits#

Return the number of qubits.

params#

return instruction params.

unit#

Get the time unit of duration.

Methods

add_decomposition(decomposition)#

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble()#

Assemble a QasmQobjInstruction

broadcast_arguments(qargs, cargs)[source]#

Validation of the arguments.

Parameters:
  • qargs (List) – List of quantum bit arguments.

  • cargs (List) – List of classical bit arguments.

Yields:

Tuple(List, List) – A tuple with single arguments.

Raises:

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if(classical, val)[source]#

Set a classical equality condition on this instruction between the register or cbit classical and value val.

Note

This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.

copy(name=None)#

Copy of the instruction.

Parameters:

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns:

a copy of the current instruction, with the name updated if it was provided

Return type:

qiskit.circuit.Instruction

inverse()[source]#

Special case. Return self.

is_parameterized()#

Return True .IFF. instruction is parameterized else False

qasm()#

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

Deprecated since version 0.25.0: The method qiskit.circuit.instruction.Instruction.qasm() is deprecated as of qiskit-terra 0.25.0. It will be removed no earlier than 3 months after the release date. Correct exporting to OpenQASM 2 is the responsibility of a larger exporter; it cannot safely be done on an object-by-object basis without context. No replacement will be provided, because the premise is wrong.

repeat(n)#

Creates an instruction with gate repeated n amount of times.

Parameters:

n (int) – Number of times to repeat the instruction

Returns:

Containing the definition.

Return type:

qiskit.circuit.Instruction

Raises:

CircuitError – If n < 1.

reverse_ops()#

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Returns:

a new instruction with

sub-instructions reversed.

Return type:

qiskit.circuit.Instruction

soft_compare(other)#

Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.

Parameters:

other (instruction) – other instruction.

Returns:

are self and other equal up to parameter expressions.

Return type:

bool

to_matrix()[source]#

Return a Numpy.array for the unitary matrix. This has been added to enable simulation without making delay a full Gate type.

Returns:

matrix representation.

Return type:

np.ndarray

to_mutable()#

Return a mutable copy of this gate.

This method will return a new mutable copy of this gate instance. If a singleton instance is being used this will be a new unique instance that can be mutated. If the instance is already mutable it will be a deepcopy of that instance.

validate_parameter(parameter)[source]#

Delay parameter (i.e. duration) must be int, float or ParameterExpression.