AerStatevector¶
- class AerStatevector(data, dims=None, **configs)[source]¶
Bases:
qiskit.quantum_info.states.statevector.Statevector
AerStatevector class
This class inherits
Statevector
, which stores probability amplitudes in its ndarray. class:AerStatevector generates this ndarray by using the same runtime withAerSimulator
.- Parameters
or (data (np.array or list or Statevector or AerStatevector or QuantumCircuit) – qiskit.circuit.Instruction): Data from which the statevector can be constructed. This can be either a complex vector, another statevector or a
QuantumCircuit
orInstruction
(Operator
is not supportted in the current implementation). If the data is a circuit or instruction, the statevector is constructed by assuming that all qubits are initialized to the zero state.dims (int or tuple or list) – Optional. The subsystem dimension of the state (See additional information).
configs (kwargs) – configurations of
AerSimulator
. method configuration must be statevector or matrix_product_state.
- Raises
AerError – if input data is not valid.
- Additional Information:
The
dims
kwarg is used toStatevector
constructor.
Methods
Return the conjugate of the operator.
Make a copy of current operator.
Return tuple of input dimension for specified subsystems.
Return a visualization of the Statevector.
Return True if other is equivalent as a statevector up to global phase.
Evolve a quantum state by the operator.
Return the tensor product state other ⊗ self.
Compute the expectation value of an operator.
Return the output statevector of an instruction.
Return a computational basis statevector.
Return a tensor product of Pauli X,Y,Z eigenstates.
Return the inner product of self and other as \(\langle self| other \rangle\).
Return True if a Statevector has norm 1.
Measure subsystems and return outcome and post-measure state.
Return result metadata of an operation that executed lastly.
Return the subsystem measurement probability vector.
Return the subsystem measurement probability dictionary.
Return the purity of the quantum state.
Reset state or subsystems to the 0-state.
Return a Statevector with reversed subsystem ordering.
Sample a dict of qubit measurement outcomes in the computational basis.
Sample a list of qubit measurement outcomes in the computational basis.
Set the seed for the quantum state RNG.
Return the tensor product state self ⊗ other.
Convert the statevector to dictionary form.
Convert state to a rank-1 projector operator
Return the trace of the quantum state as a density matrix.
Attributes
- atol = 1e-08¶
- data¶
Return data.
- dim¶
Return total state dimension.
- num_qubits¶
Return the number of qubits if a N-qubit state or None otherwise.
- rtol = 1e-05¶
- settings¶
Return settings.
- Return type
Dict