ZFeatureMap¶
- class ZFeatureMap(feature_dimension, reps=2, data_map_func=None, parameter_prefix='x', insert_barriers=False, name='ZFeatureMap')[source]¶
Bases:
qiskit.circuit.library.data_preparation.pauli_feature_map.PauliFeatureMap
The first order Pauli Z-evolution circuit.
On 3 qubits and with 2 repetitions the circuit is represented by:
┌───┐┌──────────────┐┌───┐┌──────────────┐ ┤ H ├┤ U1(2.0*x[0]) ├┤ H ├┤ U1(2.0*x[0]) ├ ├───┤├──────────────┤├───┤├──────────────┤ ┤ H ├┤ U1(2.0*x[1]) ├┤ H ├┤ U1(2.0*x[1]) ├ ├───┤├──────────────┤├───┤├──────────────┤ ┤ H ├┤ U1(2.0*x[2]) ├┤ H ├┤ U1(2.0*x[2]) ├ └───┘└──────────────┘└───┘└──────────────┘
This is a sub-class of
PauliFeatureMap
where the Pauli strings are fixed as [‘Z’]. As a result the first order expansion will be a circuit without entangling gates.Examples
>>> prep = ZFeatureMap(3, reps=3, insert_barriers=True) >>> print(prep) ┌───┐ ░ ┌──────────────┐ ░ ┌───┐ ░ ┌──────────────┐ ░ ┌───┐ ░ ┌──────────────┐ q_0: ┤ H ├─░─┤ U1(2.0*x[0]) ├─░─┤ H ├─░─┤ U1(2.0*x[0]) ├─░─┤ H ├─░─┤ U1(2.0*x[0]) ├ ├───┤ ░ ├──────────────┤ ░ ├───┤ ░ ├──────────────┤ ░ ├───┤ ░ ├──────────────┤ q_1: ┤ H ├─░─┤ U1(2.0*x[1]) ├─░─┤ H ├─░─┤ U1(2.0*x[1]) ├─░─┤ H ├─░─┤ U1(2.0*x[1]) ├ ├───┤ ░ ├──────────────┤ ░ ├───┤ ░ ├──────────────┤ ░ ├───┤ ░ ├──────────────┤ q_2: ┤ H ├─░─┤ U1(2.0*x[2]) ├─░─┤ H ├─░─┤ U1(2.0*x[2]) ├─░─┤ H ├─░─┤ U1(2.0*x[2]) ├ └───┘ ░ └──────────────┘ ░ └───┘ ░ └──────────────┘ ░ └───┘ ░ └──────────────┘
>>> data_map = lambda x: x[0]*x[0] + 1 # note: input is an array >>> prep = ZFeatureMap(3, reps=1, data_map_func=data_map) >>> print(prep) ┌───┐┌───────────────────────┐ q_0: ┤ H ├┤ U1(2.0*x[0]**2 + 2.0) ├ ├───┤├───────────────────────┤ q_1: ┤ H ├┤ U1(2.0*x[1]**2 + 2.0) ├ ├───┤├───────────────────────┤ q_2: ┤ H ├┤ U1(2.0*x[2]**2 + 2.0) ├ └───┘└───────────────────────┘
>>> classifier = ZFeatureMap(3, reps=1) + RY(3, reps=1) >>> print(classifier) ┌───┐┌──────────────┐┌──────────┐ ┌──────────┐ q_0: ┤ H ├┤ U1(2.0*x[0]) ├┤ RY(θ[0]) ├─■──■─┤ RY(θ[3]) ├──────────── ├───┤├──────────────┤├──────────┤ │ │ └──────────┘┌──────────┐ q_1: ┤ H ├┤ U1(2.0*x[1]) ├┤ RY(θ[1]) ├─■──┼──────■──────┤ RY(θ[4]) ├ ├───┤├──────────────┤├──────────┤ │ │ ├──────────┤ q_2: ┤ H ├┤ U1(2.0*x[2]) ├┤ RY(θ[2]) ├────■──────■──────┤ RY(θ[5]) ├ └───┘└──────────────┘└──────────┘ └──────────┘
Create a new first-order Pauli-Z expansion circuit.
- Parameters
feature_dimension (
int
) – The number of featuresreps (
int
) – The number of repeated circuits. Defaults to 2, has a minimum value of 1.data_map_func (
Optional
[Callable
[[ndarray
],float
]]) – A mapping function for data x which can be supplied to override the default mapping fromself_product()
.parameter_prefix (
str
) – The prefix used if default parameters are generated.insert_barriers (
bool
) – If True, barriers are inserted in between the evolution instructions and hadamard layers.
Attributes
- alpha¶
The Pauli rotation factor (alpha).
- Return type
float
- Returns
The Pauli rotation factor.
- ancillas¶
Returns a list of ancilla bits in the order that the registers were added.
- Return type
List
[AncillaQubit
]
- calibrations¶
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{'gate_name': {(qubits, params): schedule}}
- Return type
dict
- clbits¶
Returns a list of classical bits in the order that the registers were added.
- Return type
List
[Clbit
]
- data¶
- entanglement¶
Get the entanglement strategy.
- Return type
Union
[str
,List
[str
],List
[List
[str
]],List
[int
],List
[List
[int
]],List
[List
[List
[int
]]],List
[List
[List
[List
[int
]]]],Callable
[[int
],str
],Callable
[[int
],List
[List
[int
]]]]- Returns
The entanglement strategy, see
get_entangler_map()
for more detail on how the format is interpreted.
- entanglement_blocks¶
- extension_lib = 'include "qelib1.inc";'¶
- feature_dimension¶
Returns the feature dimension (which is equal to the number of qubits).
- Return type
int
- Returns
The feature dimension of this feature map.
- global_phase¶
Return the global phase of the circuit in radians.
- Return type
Union
[ParameterExpression
,float
]
- header = 'OPENQASM 2.0;'¶
- initial_state¶
Return the initial state that is added in front of the n-local circuit.
- Return type
- Returns
The initial state.
- insert_barriers¶
If barriers are inserted in between the layers or not.
- Return type
bool
- Returns
True
, if barriers are inserted in between the layers,False
if not.
- instances = 2741¶
- metadata¶
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.- Return type
dict
- num_ancillas¶
Return the number of ancilla qubits.
- Return type
int
- num_clbits¶
Return number of classical bits.
- Return type
int
- num_layers¶
Return the number of layers in the n-local circuit.
- Return type
int
- Returns
The number of layers in the circuit.
- num_parameters¶
- Return type
int
- num_parameters_settable¶
The number of distinct parameters.
- num_qubits¶
Returns the number of qubits in this circuit.
- Return type
int
- Returns
The number of qubits.
- op_start_times¶
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
- Return type
List
[int
]- Returns
List of integers representing instruction start times. The index corresponds to the index of instruction in
QuantumCircuit.data
.- Raises
AttributeError – When circuit is not scheduled.
- ordered_parameters¶
The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ... >>> print(nlocal) ┌───────┐┌──────────┐┌──────────┐┌──────────┐ q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├ └───────┘└──────────┘└──────────┘└──────────┘ >>> nlocal.parameters {Parameter(θ[1]), Parameter(θ[3])} >>> nlocal.ordered_parameters [1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
- Return type
List
[Parameter
]- Returns
The parameters objects used in the circuit.
- parameter_bounds¶
The parameter bounds for the unbound parameters in the circuit.
- Return type
Optional
[List
[Tuple
[float
,float
]]]- Returns
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If
None
is returned, problem is fully unbounded.
- parameters¶
- Return type
ParameterView
- paulis¶
The Pauli strings used in the entanglement of the qubits.
- Return type
List
[str
]- Returns
The Pauli strings as list.
- preferred_init_points¶
The initial points for the parameters. Can be stored as initial guess in optimization.
- Return type
Optional
[List
[float
]]- Returns
The initial values for the parameters, or None, if none have been set.
- prefix = 'circuit'¶
- qregs¶
A list of the quantum registers associated with the circuit.
- qubits¶
Returns a list of quantum bits in the order that the registers were added.
- Return type
List
[Qubit
]
- reps¶
The number of times rotation and entanglement block are repeated.
- Return type
int
- Returns
The number of repetitions.
- rotation_blocks¶
The blocks in the rotation layers.
- Return type
List
[Instruction
]- Returns
The blocks in the rotation layers.