English
Languages
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

# NLocal¶

class NLocal(num_qubits=None, rotation_blocks=None, entanglement_blocks=None, entanglement=None, reps=1, insert_barriers=False, parameter_prefix='θ', overwrite_block_parameters=True, skip_final_rotation_layer=False, skip_unentangled_qubits=False, initial_state=None, name='nlocal')[source]

Bases: `qiskit.circuit.library.blueprintcircuit.BlueprintCircuit`

The n-local circuit class.

The structure of the n-local circuit are alternating rotation and entanglement layers. In both layers, parameterized circuit-blocks act on the circuit in a defined way. In the rotation layer, the blocks are applied stacked on top of each other, while in the entanglement layer according to the `entanglement` strategy. The circuit blocks can have arbitrary sizes (smaller equal to the number of qubits in the circuit). Each layer is repeated `reps` times, and by default a final rotation layer is appended.

For instance, a rotation block on 2 qubits and an entanglement block on 4 qubits using `'linear'` entanglement yields the following circuit.

```┌──────┐ ░ ┌──────┐                      ░ ┌──────┐
┤0     ├─░─┤0     ├──────────────── ... ─░─┤0     ├
│  Rot │ ░ │      │┌──────┐              ░ │  Rot │
┤1     ├─░─┤1     ├┤0     ├──────── ... ─░─┤1     ├
├──────┤ ░ │  Ent ││      │┌──────┐      ░ ├──────┤
┤0     ├─░─┤2     ├┤1     ├┤0     ├ ... ─░─┤0     ├
│  Rot │ ░ │      ││  Ent ││      │      ░ │  Rot │
┤1     ├─░─┤3     ├┤2     ├┤1     ├ ... ─░─┤1     ├
├──────┤ ░ └──────┘│      ││  Ent │      ░ ├──────┤
┤0     ├─░─────────┤3     ├┤2     ├ ... ─░─┤0     ├
│  Rot │ ░         └──────┘│      │      ░ │  Rot │
┤1     ├─░─────────────────┤3     ├ ... ─░─┤1     ├
└──────┘ ░                 └──────┘      ░ └──────┘

|                                 |
+---------------------------------+
repeated reps times
```

If specified, barriers can be inserted in between every block. If an initial state object is provided, it is added in front of the NLocal.

Create a new n-local circuit.

Parameters
• num_qubits (`Optional`[`int`]) – The number of qubits of the circuit.

• rotation_blocks (`Union`[`QuantumCircuit`, `List`[`QuantumCircuit`], `Instruction`, `List`[`Instruction`], `None`]) – The blocks used in the rotation layers. If multiple are passed, these will be applied one after another (like new sub-layers).

• entanglement_blocks (`Union`[`QuantumCircuit`, `List`[`QuantumCircuit`], `Instruction`, `List`[`Instruction`], `None`]) – The blocks used in the entanglement layers. If multiple are passed, these will be applied one after another. To use different entanglements for the sub-layers, see `get_entangler_map()`.

• entanglement (`Union`[`List`[`int`], `List`[`List`[`int`]], `None`]) – The indices specifying on which qubits the input blocks act. If `None`, the entanglement blocks are applied at the top of the circuit.

• reps (`int`) – Specifies how often the rotation blocks and entanglement blocks are repeated.

• insert_barriers (`bool`) – If `True`, barriers are inserted in between each layer. If `False`, no barriers are inserted.

• parameter_prefix (`str`) – The prefix used if default parameters are generated.

• overwrite_block_parameters (`Union`[`bool`, `List`[`List`[`Parameter`]]]) – If the parameters in the added blocks should be overwritten. If `False`, the parameters in the blocks are not changed.

• skip_final_rotation_layer (`bool`) – Whether a final rotation layer is added to the circuit.

• skip_unentangled_qubits (`bool`) – If `True`, the rotation gates act only on qubits that are entangled. If `False`, the rotation gates act on all qubits.

• initial_state (`Optional`[`QuantumCircuit`]) – A `QuantumCircuit` object which can be used to describe an initial state prepended to the NLocal circuit.

• name (`Optional`[`str`]) – The name of the circuit.

Examples

TODO

Raises
• ValueError – If `reps` parameter is less than or equal to 0.

• TypeError – If `reps` parameter is not an int value.

Methods Defined Here

 `add_layer` Append another layer to the NLocal. `assign_parameters` Assign parameters to the n-local circuit. `get_entangler_map` Get the entangler map for in the repetition `rep_num` and the block `block_num`. `get_unentangled_qubits` Get the indices of unentangled qubits in a set. `print_settings` Returns information about the setting.

Attributes

ancillas

Returns a list of ancilla bits in the order that the registers were added.

Return type

`List`[`AncillaQubit`]

calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`

Return type

`dict`

clbits

Returns a list of classical bits in the order that the registers were added.

Return type

`List`[`Clbit`]

data
entanglement

Get the entanglement strategy.

Return type

`Union`[`str`, `List`[`str`], `List`[`List`[`str`]], `List`[`int`], `List`[`List`[`int`]], `List`[`List`[`List`[`int`]]], `List`[`List`[`List`[`List`[`int`]]]], `Callable`[[`int`], `str`], `Callable`[[`int`], `List`[`List`[`int`]]]]

Returns

The entanglement strategy, see `get_entangler_map()` for more detail on how the format is interpreted.

entanglement_blocks

The blocks in the entanglement layers.

Return type

`List`[`Instruction`]

Returns

The blocks in the entanglement layers.

extension_lib = 'include "qelib1.inc";'
global_phase

Return the global phase of the circuit in radians.

Return type

`Union`[`ParameterExpression`, `float`]

initial_state

Return the initial state that is added in front of the n-local circuit.

Return type

`QuantumCircuit`

Returns

The initial state.

insert_barriers

If barriers are inserted in between the layers or not.

Return type

`bool`

Returns

`True`, if barriers are inserted in between the layers, `False` if not.

instances = 2396

The user provided metadata associated with the circuit

The metadata for the circuit is a user provided `dict` of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

Return type

`dict`

num_ancillas

Return the number of ancilla qubits.

Return type

`int`

num_clbits

Return number of classical bits.

Return type

`int`

num_layers

Return the number of layers in the n-local circuit.

Return type

`int`

Returns

The number of layers in the circuit.

num_parameters
Return type

`int`

num_parameters_settable

The number of total parameters that can be set to distinct values.

This does not change when the parameters are bound or exchanged for same parameters, and therefore is different from `num_parameters` which counts the number of unique `Parameter` objects currently in the circuit.

Return type

`int`

Returns

The number of parameters originally available in the circuit.

Note

This quantity does not require the circuit to be built yet.

num_qubits

Returns the number of qubits in this circuit.

Return type

`int`

Returns

The number of qubits.

op_start_times

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

Return type

`List`[`int`]

Returns

List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.

Raises

AttributeError – When circuit is not scheduled.

ordered_parameters

The parameters used in the underlying circuit.

This includes float values and duplicates.

Examples

```>>> # prepare circuit ...
>>> print(nlocal)
┌───────┐┌──────────┐┌──────────┐┌──────────┐
q_0: ┤ Ry(1) ├┤ Ry(θ) ├┤ Ry(θ) ├┤ Ry(θ) ├
└───────┘└──────────┘└──────────┘└──────────┘
>>> nlocal.parameters
{Parameter(θ), Parameter(θ)}
>>> nlocal.ordered_parameters
[1, Parameter(θ), Parameter(θ), Parameter(θ)]
```
Return type

`List`[`Parameter`]

Returns

The parameters objects used in the circuit.

parameter_bounds

The parameter bounds for the unbound parameters in the circuit.

Return type

`Optional`[`List`[`Tuple`[`float`, `float`]]]

Returns

A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If `None` is returned, problem is fully unbounded.

parameters
Return type

`ParameterView`

preferred_init_points

The initial points for the parameters. Can be stored as initial guess in optimization.

Return type

`Optional`[`List`[`float`]]

Returns

The initial values for the parameters, or None, if none have been set.

prefix = 'circuit'
qregs

A list of the quantum registers associated with the circuit.

qubits

Returns a list of quantum bits in the order that the registers were added.

Return type

`List`[`Qubit`]

reps

The number of times rotation and entanglement block are repeated.

Return type

`int`

Returns

The number of repetitions.

rotation_blocks

The blocks in the rotation layers.

Return type

`List`[`Instruction`]

Returns

The blocks in the rotation layers.