Skip to main contentIBM Quantum Documentation
You are viewing the API reference for an old version of Qiskit SDK. Switch to latest version

P_BFGS

P_BFGS(maxfun=1000, ftol=2.220446049250313e-15, factr=None, iprint=- 1, max_processes=None, options=None, max_evals_grouped=1, **kwargs)

GitHub(opens in a new tab)

Bases: qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer

Parallelized Limited-memory BFGS optimizer.

P-BFGS is a parallelized version of L_BFGS_B with which it shares the same parameters. P-BFGS can be useful when the target hardware is a quantum simulator running on a classical machine. This allows the multiple processes to use simulation to potentially reach a minimum faster. The parallelization may also help the optimizer avoid getting stuck at local optima.

Uses scipy.optimize.fmin_l_bfgs_b. For further detail, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html(opens in a new tab)

Parameters

  • maxfun (int) – Maximum number of function evaluations.
  • ftol (float) – The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol.
  • factr (Optional[float]) – (DEPRECATED) The iteration stops when (f^k - f^{k+1})/max{|f^k|, |f^{k+1}|,1} <= factr * eps, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B.
  • iprint (int) – Controls the frequency of output. iprint < 0 means no output; iprint = 0 print only one line at the last iteration; 0 < iprint < 99 print also f and |proj g| every iprint iterations; iprint = 99 print details of every iteration except n-vectors; iprint = 100 print also the changes of active set and final x; iprint > 100 print details of every iteration including x and g.
  • max_processes (Optional[int]) – maximum number of processes allowed, has a min. value of 1 if not None.
  • options (Optional[dict]) – A dictionary of solver options.
  • max_evals_grouped (int) – Max number of default gradient evaluations performed simultaneously.
  • kwargs – additional kwargs for scipy.optimize.minimize.

Methods

get_support_level

P_BFGS.get_support_level()

Return support level dictionary

gradient_num_diff

static P_BFGS.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters

  • x_center (ndarray) – point around which we compute the gradient
  • f (func) – the function of which the gradient is to be computed.
  • epsilon (float) – the epsilon used in the numeric differentiation.
  • max_evals_grouped (int) – max evals grouped

Returns

the gradient computed

Return type

grad

minimize

P_BFGS.minimize(fun, x0, jac=None, bounds=None)

Minimize the scalar function.

Parameters

  • fun (Callable[[Union[float, ndarray]], float]) – The scalar function to minimize.
  • x0 (Union[float, ndarray]) – The initial point for the minimization.
  • jac (Optional[Callable[[Union[float, ndarray]], Union[float, ndarray]]]) – The gradient of the scalar function fun.
  • bounds (Optional[List[Tuple[float, float]]]) – Bounds for the variables of fun. This argument might be ignored if the optimizer does not support bounds.

Return type

OptimizerResult

Returns

The result of the optimization, containing e.g. the result as attribute x.

optimize

P_BFGS.optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)

Perform optimization.

Parameters

  • num_vars (int) – Number of parameters to be optimized.
  • objective_function (callable) – A function that computes the objective function.
  • gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
  • variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
  • initial_point (numpy.ndarray[float]) – Initial point.

Returns

point, value, nfev

point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None

Raises

ValueError – invalid input

P_BFGS.print_options()

Print algorithm-specific options.

set_max_evals_grouped

P_BFGS.set_max_evals_grouped(limit)

Set max evals grouped

set_options

P_BFGS.set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

wrap_function

static P_BFGS.wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters

  • function (func) – the target function
  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper


Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings

Return type

Dict[str, Any]

Was this page helpful?
Report a bug or request content on GitHub.