Skip to main contentIBM Quantum Documentation
You are viewing the API reference for an old version of Qiskit SDK. Switch to latest version

UnitaryGate

UnitaryGate(data, label=None) GitHub(opens in a new tab)

Bases: qiskit.circuit.gate.Gate

Class for representing unitary gates

Create a gate from a numeric unitary matrix.

Parameters

  • data (matrix or Operator) – unitary operator.
  • label (str) – unitary name for backend [Default: None].

Raises

ExtensionError – if input data is not an N-qubit unitary operator.


Methods

add_decomposition

UnitaryGate.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

adjoint

UnitaryGate.adjoint()

Return the adjoint of the unitary.

assemble

UnitaryGate.assemble()

Assemble a QasmQobjInstruction

broadcast_arguments

UnitaryGate.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]

Parameters

  • qargs (List) – List of quantum bit arguments.
  • cargs (List) – List of classical bit arguments.

Return type

Tuple[List, List]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if

UnitaryGate.c_if(classical, val)

Set a classical equality condition on this instruction between the register or cbit classical and value val.

Note

This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.

conjugate

UnitaryGate.conjugate()

Return the conjugate of the unitary.

control

UnitaryGate.control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return controlled version of gate

Parameters

  • num_ctrl_qubits (int) – number of controls to add to gate (default=1)
  • label (str) – optional gate label
  • ctrl_state (int or str or None) – The control state in decimal or as a bit string (e.g. ‘1011’). If None, use 2**num_ctrl_qubits-1.

Returns

controlled version of gate.

Return type

UnitaryGate

Raises

  • QiskitError – Invalid ctrl_state.
  • ExtensionError – Non-unitary controlled unitary.

copy

UnitaryGate.copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name

updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

UnitaryGate.inverse()

Return the adjoint of the unitary.

is_parameterized

UnitaryGate.is_parameterized()

Return True .IFF. instruction is parameterized else False

mirror

UnitaryGate.mirror()

DEPRECATED: use instruction.reverse_ops().

Returns

a new instruction with sub-instructions

reversed.

Return type

qiskit.circuit.Instruction

power

UnitaryGate.power(exponent)

Creates a unitary gate as gate^exponent.

Parameters

exponent (float) – Gate^exponent

Returns

To which to_matrix is self.to_matrix^exponent.

Return type

qiskit.extensions.UnitaryGate

Raises

CircuitError – If Gate is not unitary

qasm

UnitaryGate.qasm()

The qasm for a custom unitary gate This is achieved by adding a custom gate that corresponds to the definition of this gate. It gives the gate a random name if one hasn’t been given to it.

repeat

UnitaryGate.repeat(n)

Creates an instruction with gate repeated n amount of times.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

reverse_ops

UnitaryGate.reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Returns

a new instruction with

sub-instructions reversed.

Return type

qiskit.circuit.Instruction

soft_compare

UnitaryGate.soft_compare(other)

Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.

Parameters

other (instruction) – other instruction.

Returns

are self and other equal up to parameter expressions.

Return type

bool

to_matrix

UnitaryGate.to_matrix()

Return a Numpy.array for the gate unitary matrix.

Returns

if the Gate subclass has a matrix definition.

Return type

np.ndarray

Raises

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

transpose

UnitaryGate.transpose()

Return the transpose of the unitary.

validate_parameter

UnitaryGate.validate_parameter(parameter)

Unitary gate parameter has to be an ndarray.


Attributes

condition_bits

Get Clbits in condition.

Return type

List[Clbit]

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

Return type

str

params

return instruction params.

unit

Get the time unit of duration.

Was this page helpful?