Skip to main contentIBM Quantum Documentation
You are viewing the API reference for an old version of Qiskit SDK. Switch to latest version

Statevector

Statevector(data, dims=None) GitHub(opens in a new tab)

Statevector class

Initialize a statevector object.

Parameters

  • data (vector_like) – a complex statevector.
  • dims (int or tuple or list) – Optional. The subsystem dimension of the state (See additional information).

Raises

QiskitError – if input data is not valid.

Additional Information:

The dims kwarg can be None, an integer, or an iterable of integers.

  • Iterable – the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.
  • Int or None – the length of the input vector specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.

Attributes

atol

The absolute tolerance parameter for float comparisons.

data

Return data.

dim

Return total state dimension.

num_qubits

Return the number of qubits if a N-qubit state or None otherwise.

rtol

The relative tolerance parameter for float comparisons.


Methods

__mul__

Statevector.__mul__(other)

add

Statevector.add(other)

Return the linear combination self + other.

DEPRECATED: use state + other instead.

Parameters

other (QuantumState) – a quantum state object.

Returns

the linear combination self + other.

Return type

LinearOperator

Raises

QiskitError – if other is not a quantum state, or has incompatible dimensions.

conjugate

Statevector.conjugate()

Return the conjugate of the operator.

copy

Statevector.copy()

Make a copy of current operator.

dims

Statevector.dims(qargs=None)

Return tuple of input dimension for specified subsystems.

equiv

Statevector.equiv(other, rtol=None, atol=None)

Return True if statevectors are equivalent up to global phase.

Parameters

  • other (Statevector) – a statevector object.
  • rtol (float) – relative tolerance value for comparison.
  • atol (float) – absolute tolerance value for comparison.

Returns

True if statevectors are equivalent up to global phase.

Return type

bool

evolve

Statevector.evolve(other, qargs=None)

Evolve a quantum state by the operator.

Parameters

  • other (Operator) – The operator to evolve by.
  • qargs (list) – a list of Statevector subsystem positions to apply the operator on.

Returns

the output quantum state.

Return type

Statevector

Raises

QiskitError – if the operator dimension does not match the specified Statevector subsystem dimensions.

expand

Statevector.expand(other)

Return the tensor product state other ⊗ self.

Parameters

other (Statevector) – a quantum state object.

Returns

the tensor product state other ⊗ self.

Return type

Statevector

Raises

QiskitError – if other is not a quantum state.

from_instruction

classmethod Statevector.from_instruction(instruction)

Return the output statevector of an instruction.

The statevector is initialized in the state 0,,0|{0,\ldots,0}\rangle of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned.

Parameters

instruction (qiskit.circuit.Instruction orQuantumCircuit) – instruction or circuit

Returns

The final statevector.

Return type

Statevector

Raises

QiskitError – if the instruction contains invalid instructions for the statevector simulation.

from_int

static Statevector.from_int(i, dims)

Return a computational basis statevector.

Parameters

  • i (int) – the basis state element.
  • dims (int or tuple or list) – The subsystem dimensions of the statevector (See additional information).

Returns

The computational basis state i|i\rangle.

Return type

Statevector

Additional Information:

The dims kwarg can be an integer or an iterable of integers.

  • Iterable – the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.
  • Int – the integer specifies the total dimension of the state. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.

from_label

classmethod Statevector.from_label(label)

Return a tensor product of Pauli X,Y,Z eigenstates.

LabelStatevector
"0"[1,0][1, 0]
"1"[0,1][0, 1]
"+"[1/2,1/2][1 / \sqrt{2}, 1 / \sqrt{2}]
"-"[1/2,1/2][1 / \sqrt{2}, -1 / \sqrt{2}]
"r"[1/2,i/2][1 / \sqrt{2}, i / \sqrt{2}]
"l"[1/2,i/2][1 / \sqrt{2}, -i / \sqrt{2}]

Parameters

label (string) – a eigenstate string ket label (see table for allowed values).

Returns

The N-qubit basis state density matrix.

Return type

Statevector

Raises

QiskitError – if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits.

is_valid

Statevector.is_valid(atol=None, rtol=None)

Return True if a Statevector has norm 1.

measure

Statevector.measure(qargs=None)

Measure subsystems and return outcome and post-measure state.

Note that this function uses the QuantumStates internal random number generator for sampling the measurement outcome. The RNG seed can be set using the seed() method.

Parameters

qargs (list or None) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).

Returns

the pair (outcome, state) where outcome is the

measurement outcome string label, and state is the collapsed post-measurement state for the corresponding outcome.

Return type

tuple

multiply

Statevector.multiply(other)

Return the scalar multipled state other * self.

Parameters

other (complex) – a complex number.

Returns

the scalar multipled state other * self.

Return type

QuantumState

Raises

QiskitError – if other is not a valid complex number.

probabilities

Statevector.probabilities(qargs=None, decimals=None)

Return the subsystem measurement probability vector.

Measurement probabilities are with respect to measurement in the computation (diagonal) basis.

Parameters

  • qargs (None or list) – subsystems to return probabilities for, if None return for all subsystems (Default: None).
  • decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).

Returns

The Numpy vector array of probabilities.

Return type

np.array

Examples

Consider a 2-qubit product state ψ=+0|\psi\rangle=|+\rangle\otimes|0\rangle.

from qiskit.quantum_info import Statevector
 
psi = Statevector.from_label('+0')
 
# Probabilities for measuring both qubits
probs = psi.probabilities()
print('probs: {}'.format(probs))
 
# Probabilities for measuring only qubit-0
probs_qubit_0 = psi.probabilities([0])
print('Qubit-0 probs: {}'.format(probs_qubit_0))
 
# Probabilities for measuring only qubit-1
probs_qubit_1 = psi.probabilities([1])
print('Qubit-1 probs: {}'.format(probs_qubit_1))
probs: [0.5 0.  0.5 0. ]
Qubit-0 probs: [1. 0.]
Qubit-1 probs: [0.5 0.5]

We can also permute the order of qubits in the qargs list to change the qubit position in the probabilities output

from qiskit.quantum_info import Statevector
 
psi = Statevector.from_label('+0')
 
# Probabilities for measuring both qubits
probs = psi.probabilities([0, 1])
print('probs: {}'.format(probs))
 
# Probabilities for measuring both qubits
# but swapping qubits 0 and 1 in output
probs_swapped = psi.probabilities([1, 0])
print('Swapped probs: {}'.format(probs_swapped))
probs: [0.5 0.  0.5 0. ]
Swapped probs: [0.5 0.5 0.  0. ]

probabilities_dict

Statevector.probabilities_dict(qargs=None, decimals=None)

Return the subsystem measurement probability dictionary.

Measurement probabilities are with respect to measurement in the computation (diagonal) basis.

This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.

Parameters

  • qargs (None or list) – subsystems to return probabilities for, if None return for all subsystems (Default: None).
  • decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).

Returns

The measurement probabilities in dict (ket) form.

Return type

dict

purity

Statevector.purity()

Return the purity of the quantum state.

reset

Statevector.reset(qargs=None)

Reset state or subsystems to the 0-state.

Parameters

qargs (list or None) – subsystems to reset, if None all subsystems will be reset to their 0-state (Default: None).

Returns

the reset state.

Return type

Statevector

Additional Information:

If all subsystems are reset this will return the ground state on all subsystems. If only a some subsystems are reset this function will perform a measurement on those subsystems and evolve the subsystems so that the collapsed post-measurement states are rotated to the 0-state. The RNG seed for this sampling can be set using the seed() method.

sample_counts

Statevector.sample_counts(shots, qargs=None)

Sample a dict of qubit measurement outcomes in the computational basis.

Parameters

  • shots (int) – number of samples to generate.
  • qargs (None or list) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).

Returns

sampled counts dictionary.

Return type

dict

Additional Information:

This function samples measurement outcomes using the measure probabilities() for the current state and qargs. It does not actually implement the measurement so the current state is not modified.

The seed for random number generator used for sampling can be set to a fixed value by using the stats seed() method.

sample_memory

Statevector.sample_memory(shots, qargs=None)

Sample a list of qubit measurement outcomes in the computational basis.

Parameters

  • shots (int) – number of samples to generate.
  • qargs (None or list) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).

Returns

list of sampled counts if the order sampled.

Return type

np.array

Additional Information:

This function samples measurement outcomes using the measure probabilities() for the current state and qargs. It does not actually implement the measurement so the current state is not modified.

The seed for random number generator used for sampling can be set to a fixed value by using the stats seed() method.

seed

Statevector.seed(value=None)

Set the seed for the quantum state RNG.

set_atol

classmethod Statevector.set_atol(value)

Set the class default absolute tolerance parameter for float comparisons.

set_rtol

classmethod Statevector.set_rtol(value)

Set the class default relative tolerance parameter for float comparisons.

subtract

Statevector.subtract(other)

Return the linear operator self - other.

DEPRECATED: use state - other instead.

Parameters

other (QuantumState) – a quantum state object.

Returns

the linear combination self - other.

Return type

LinearOperator

Raises

QiskitError – if other is not a quantum state, or has incompatible dimensions.

tensor

Statevector.tensor(other)

Return the tensor product state self ⊗ other.

Parameters

other (Statevector) – a quantum state object.

Returns

the tensor product operator self ⊗ other.

Return type

Statevector

Raises

QiskitError – if other is not a quantum state.

to_counts

Statevector.to_counts()

Returns the statevector as a counts dict of probabilities.

DEPRECATED: use probabilities_dict() instead.

Returns

Counts of probabilities.

Return type

dict

to_dict

Statevector.to_dict(decimals=None)

Convert the statevector to dictionary form.

This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.

Parameters

decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).

Returns

the dictionary form of the Statevector.

Return type

dict

Example

The ket-form of a 2-qubit statevector ψ=0|\psi\rangle = |-\rangle\otimes |0\rangle

from qiskit.quantum_info import Statevector
 
psi = Statevector.from_label('-0')
print(psi.to_dict())
{'00': (0.7071067811865475+0j), '10': (-0.7071067811865475+0j)}

For non-qubit subsystems the integer range can go from 0 to 9. For example in a qutrit system

import numpy as np
from qiskit.quantum_info import Statevector
 
vec = np.zeros(9)
vec[0] = 1 / np.sqrt(2)
vec[-1] = 1 / np.sqrt(2)
psi = Statevector(vec, dims=(3, 3))
print(psi.to_dict())
{'00': (0.7071067811865475+0j), '22': (0.7071067811865475+0j)}

For large subsystem dimensions delimeters are required. The following example is for a 20-dimensional system consisting of a qubit and 10-dimensional qudit.

import numpy as np
from qiskit.quantum_info import Statevector
 
vec = np.zeros(2 * 10)
vec[0] = 1 / np.sqrt(2)
vec[-1] = 1 / np.sqrt(2)
psi = Statevector(vec, dims=(2, 10))
print(psi.to_dict())
{'00': (0.7071067811865475+0j), '91': (0.7071067811865475+0j)}

to_operator

Statevector.to_operator()

Convert state to a rank-1 projector operator

trace

Statevector.trace()

Return the trace of the quantum state as a density matrix.

Was this page helpful?