iSwapGate¶

class iSwapGate[source]

iSWAP gate.

A 2-qubit XX+YY interaction. This is a Clifford and symmetric gate. Its action is to swap two qubit states and phase the $$|01\rangle$$ and $$|10\rangle$$ amplitudes by i.

Circuit Symbol:

q_0: ─⨂─
│
q_1: ─⨂─

Reference Implementation:

┌───┐┌───┐     ┌───┐
q_0: ┤ S ├┤ H ├──■──┤ X ├─────
├───┤└───┘┌─┴─┐└─┬─┘┌───┐
q_1: ┤ S ├─────┤ X ├──■──┤ H ├
└───┘     └───┘     └───┘

Matrix Representation:

$\begin{split}iSWAP = R_{XX+YY}(-\frac{\pi}{2}) = exp(i \frac{\pi}{4} (X{\otimes}X+Y{\otimes}Y)) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\end{split}$

This gate is equivalent to a SWAP up to a diagonal.

$\begin{split}iSWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} . \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\end{split}$

Create new iSwap gate.

Attributes

 iSwapGate.decompositions Get the decompositions of the instruction from the SessionEquivalenceLibrary. iSwapGate.definition Return definition in terms of other basic gates. iSwapGate.label Return gate label iSwapGate.params return instruction params.

Methods

 iSwapGate.add_decomposition(decomposition) Add a decomposition of the instruction to the SessionEquivalenceLibrary. Assemble a QasmQobjInstruction iSwapGate.broadcast_arguments(qargs, cargs) Validation and handling of the arguments and its relationship. iSwapGate.c_if(classical, val) Add classical condition on register classical and value val. iSwapGate.control([num_ctrl_qubits, label, …]) Return controlled version of gate. iSwapGate.copy([name]) Copy of the instruction. Invert this instruction. Return True .IFF. For a composite instruction, reverse the order of sub-gates. iSwapGate.power(exponent) Creates a unitary gate as gate^exponent. Return a default OpenQASM string for the instruction. Creates an instruction with gate repeated n amount of times. Return a numpy.array for the iSWAP gate.