Source code for qiskit.providers.ibmq.managed.ibmqjobmanager

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
# (C) Copyright IBM 2019, 2020.
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Job Manager used to manage jobs for IBM Quantum Experience."""

import logging
from typing import List, Optional, Union, Any
from concurrent import futures

from qiskit.circuit import QuantumCircuit
from qiskit.pulse import Schedule
from qiskit.providers.ibmq.apiconstants import ApiJobShareLevel
from qiskit.providers.ibmq.utils import validate_job_tags
from qiskit.providers.ibmq.accountprovider import AccountProvider

from .exceptions import IBMQJobManagerInvalidStateError
from .utils import format_job_details, format_status_counts
from .managedjobset import ManagedJobSet
from ..ibmqbackend import IBMQBackend

logger = logging.getLogger(__name__)

[docs]class IBMQJobManager: """Job Manager for IBM Quantum Experience. The Job Manager is a higher level mechanism for handling :class:`jobs<qiskit.providers.ibmq.job.IBMQJob>` composed of multiple circuits or pulse schedules. It splits the experiments into multiple jobs based on backend restrictions. When the jobs are finished, it collects and presents the results in a unified view. You can use the :meth:`run()` method to submit multiple experiments with the Job Manager:: from qiskit.providers.ibmq.managed import IBMQJobManager from qiskit.circuit.random import random_circuit # Build a thousand circuits. circs = [] for _ in range(1000): circs.append(random_circuit(n_qubits=5, depth=4)) # Use Job Manager to break the circuits into multiple jobs. job_manager = IBMQJobManager() job_set_foo =, backend=backend, name='foo') The :meth:`run()` method returns a :class:`ManagedJobSet` instance, which represents the set of jobs for the experiments. You can use the :class:`ManagedJobSet` methods, such as :meth:`statuses()<ManagedJobSet.statuses>`, :meth:`results()<ManagedJobSet.results>`, and :meth:`error_messages()<ManagedJobSet.error_messages>` to get a combined view of the jobs in the set. For example:: results = job_set_foo.results() results.get_counts(5) # Counts for experiment 5. The :meth:`job_set_id()<ManagedJobSet.job_set_id>` method of :class:`ManagedJobSet` returns the job set ID, which can be used to retrieve the job set later:: job_set_id = job_set_foo.job_set_id() retrieved_foo = job_manager.retrieve_job_set(job_set_id=job_set_id, provider=provider) """ def __init__(self) -> None: """IBMQJobManager constructor.""" self._job_sets = [] # type: List[ManagedJobSet] self._executor = futures.ThreadPoolExecutor()
[docs] def run( self, experiments: Union[List[QuantumCircuit], List[Schedule]], backend: IBMQBackend, name: Optional[str] = None, max_experiments_per_job: Optional[int] = None, job_share_level: Optional[str] = None, job_tags: Optional[List[str]] = None, **run_config: Any ) -> ManagedJobSet: """Execute a set of circuits or pulse schedules on a backend. The circuits or schedules will be split into multiple jobs. Circuits or schedules in a job will be executed together in each shot. Args: experiments: Circuit(s) or pulse schedule(s) to execute. backend: Backend to execute the experiments on. name: Name for this set of jobs. Each job within the set will have a job name that consists of the set name followed by a suffix. If not specified, the current date and time is used. max_experiments_per_job: Maximum number of experiments to run in each job. If not specified, the default is to use the maximum allowed by the backend. If the specified value is greater the maximum allowed by the backend, the default is used. job_share_level: Allow sharing the jobs at the hub, group, project, or global level. The level can be one of: ``global``, ``hub``, ``group``, ``project``, and ``none``. job_tags: Tags to be assigned to the jobs. The tags can subsequently be used as a filter in the :meth:`<>` function call. run_config: Configuration of the runtime environment. Some examples of these configuration parameters include: ``qobj_id``, ``qobj_header``, ``shots``, ``memory``, ``seed_simulator``, ``qubit_lo_freq``, ``meas_lo_freq``, ``qubit_lo_range``, ``meas_lo_range``, ``schedule_los``, ``meas_level``, ``meas_return``, ``meas_map``, ``memory_slot_size``, ``rep_time``, and ``parameter_binds``. Refer to the documentation on :func:`qiskit.compiler.assemble` for details on these arguments. Returns: A :class:`ManagedJobSet` instance representing the set of jobs for the experiments. Raises: IBMQJobManagerInvalidStateError: If an input parameter value is not valid. """ if (any(isinstance(exp, Schedule) for exp in experiments) and not backend.configuration().open_pulse): raise IBMQJobManagerInvalidStateError( 'Pulse schedules found, but the backend does not support pulse schedules.') # Validate job share level if job_share_level: try: api_job_share_level = ApiJobShareLevel(job_share_level.lower()) except ValueError: valid_job_share_levels_str = ', '.join(level.value for level in ApiJobShareLevel) raise IBMQJobManagerInvalidStateError( '"{}" is not a valid job share level. Valid job share levels are: {}'.format( job_share_level, valid_job_share_levels_str)) from None else: api_job_share_level = ApiJobShareLevel.NONE validate_job_tags(job_tags, IBMQJobManagerInvalidStateError) experiment_list = self._split_experiments( experiments, backend=backend, max_experiments_per_job=max_experiments_per_job) job_set = ManagedJobSet(name=name), backend=backend, executor=self._executor, job_share_level=api_job_share_level, job_tags=job_tags, **run_config) self._job_sets.append(job_set) return job_set
def _split_experiments( self, experiments: Union[List[QuantumCircuit], List[Schedule]], backend: IBMQBackend, max_experiments_per_job: Optional[int] = None ) -> List[Union[List[QuantumCircuit], List[Schedule]]]: """Split a list of experiments into sub-lists. Args: experiments: Experiments to be split. backend: Backend to execute the experiments on. max_experiments_per_job: Maximum number of experiments to run in each job. Returns: A list of sub-lists of experiments. """ if hasattr(backend.configuration(), 'max_experiments'): backend_max = backend.configuration().max_experiments chunk_size = backend_max if max_experiments_per_job is None \ else min(backend_max, max_experiments_per_job) elif max_experiments_per_job: chunk_size = max_experiments_per_job else: return [experiments] return [experiments[x:x + chunk_size] for x in range(0, len(experiments), chunk_size)]
[docs] def report(self, detailed: bool = True) -> str: """Return a report on the statuses of all jobs managed by this Job Manager. Args: detailed: ``True`` if a detailed report is to be returned. ``False`` if a summary report is to be returned. Returns: A report on job statuses. """ job_set_statuses = [job_set.statuses() for job_set in self._job_sets] flat_status_list = [stat for stat_list in job_set_statuses for stat in stat_list] report = ["Summary report:"] report.extend(format_status_counts(flat_status_list)) if detailed: report.append("\nDetail report:") for i, job_set in enumerate(self._job_sets): report.append((" Job set name: {}, ID: {}".format(, job_set.job_set_id()))) report.extend(format_job_details( job_set_statuses[i], job_set.managed_jobs())) return '\n'.join(report)
[docs] def job_sets(self, name: Optional[str] = None) -> List[ManagedJobSet]: """Return job sets being managed in this session, subject to optional filtering. Args: name: Name of the managed job sets. Returns: A list of managed job sets that match the filter. """ if name: return [job_set for job_set in self._job_sets if == name] return self._job_sets
[docs] def retrieve_job_set( self, job_set_id: str, provider: AccountProvider, refresh: bool = False ) -> ManagedJobSet: """Retrieve a previously submitted job set. Args: job_set_id: Job set ID. provider: Provider used for this job set. refresh: If ``True``, re-query the server for the job set information. Otherwise return the cached value. Returns: Retrieved job set. Raises: IBMQJobManagerUnknownJobSet: If the job set cannot be found. IBMQJobManagerInvalidStateError: If jobs for this job set are found but have unexpected attributes. """ for index, mjs in enumerate(self._job_sets): if mjs.job_set_id() == job_set_id: if not refresh: return mjs del self._job_sets[index] break new_job_set = ManagedJobSet(short_id=job_set_id) new_job_set.retrieve_jobs(provider=provider) self._job_sets.append(new_job_set) return new_job_set