Russian
Языки
English
Bengali
French
Hindi
Italian
Japanese
Korean
Malayalam
Russian
Spanish
Tamil
Turkish
Vietnamese

Примечание

Страница создана на основе docs/tutorials/03_quantum_kernel.ipynb.

Квантовый ядерный метод машинного обучения

Общая задача машинного обучения заключается в поиске и изучении закономерностей в данных. Для многих наборов данных элементы данных (datapoints) лучше распознаются в большем пространстве измерений, через использование ядерной функции: \(k(\vec{x}_i, \vec{x}_j) = \langle f(\vec{x}_i), f(\vec{x}_j) \rangle\), где \(k\) - ядерная функция, \(\vec{x}_i, \vec{x}_j\) - входные данные с количеством измерений равным \(n\), \(f\) — это преобразование от \(n\)-мерного до \(m\)-мерного пространства и \(\langle a,b \rangle\) обозначает точечный результат. При рассмотрении конечных данных, ядерная функция может быть представлена в виде матрицы: \(K_{ij} = k(\vec{x}_i,\vec{x}_j)\).

В квантовом машинном обучении методом ядерной функции, преобразование \(\phi(\vec{x})\) используется для сопоставления классической векторной функции \(\vec{x} с квантовым Гильбертовым пространством, :math:\), таким, что \(K_{ij} = \left| \langle \phi^\dagger(\vec{x}_j)| \phi(\vec{x}_i) \rangle \right|^{2}\). См. Контролируемое обучение с квантово расширенными функциональными пространствами для более подробной информации.

В данном блокноте мы используем qiskit для вычисления ядерной матрицы с использованием квантовой функции преобразования, а затем используем эту матрицу в алгоритмах классификации и кластеризации scikit-learn.

[1]:
import matplotlib.pyplot as plt
import numpy as np

from sklearn.svm import SVC
from sklearn.cluster import SpectralClustering
from sklearn.metrics import normalized_mutual_info_score

from qiskit import BasicAer
from qiskit.algorithms.state_fidelities import ComputeUncompute
from qiskit.circuit.library import ZZFeatureMap
from qiskit.primitives import Sampler
from qiskit.utils import algorithm_globals
from qiskit_machine_learning.algorithms import QSVC
from qiskit_machine_learning.kernels import FidelityQuantumKernel
from qiskit_machine_learning.datasets import ad_hoc_data

seed = 12345
algorithm_globals.random_seed = seed

Классификация

Для нашего примера классификации мы будем использовать набор данных ad hoc dataset как в статье Supervised learning with quantum enhanced feature spaces <https://arxiv.org/pdf/1804.11326.pdf>`__, и алгоритм ``scikit-learn, поддерживающий алгоритм векторной машинной классификации (svc).

[2]:
adhoc_dimension = 2
train_features, train_labels, test_features, test_labels, adhoc_total = ad_hoc_data(
    training_size=20,
    test_size=5,
    n=adhoc_dimension,
    gap=0.3,
    plot_data=False,
    one_hot=False,
    include_sample_total=True,
)

plt.figure(figsize=(5, 5))
plt.ylim(0, 2 * np.pi)
plt.xlim(0, 2 * np.pi)
plt.imshow(
    np.asmatrix(adhoc_total).T,
    interpolation="nearest",
    origin="lower",
    cmap="RdBu",
    extent=[0, 2 * np.pi, 0, 2 * np.pi],
)

plt.scatter(
    train_features[np.where(train_labels[:] == 0), 0],
    train_features[np.where(train_labels[:] == 0), 1],
    marker="s",
    facecolors="w",
    edgecolors="b",
    label="A train",
)
plt.scatter(
    train_features[np.where(train_labels[:] == 1), 0],
    train_features[np.where(train_labels[:] == 1), 1],
    marker="o",
    facecolors="w",
    edgecolors="r",
    label="B train",
)
plt.scatter(
    test_features[np.where(test_labels[:] == 0), 0],
    test_features[np.where(test_labels[:] == 0), 1],
    marker="s",
    facecolors="b",
    edgecolors="w",
    label="A test",
)
plt.scatter(
    test_features[np.where(test_labels[:] == 1), 0],
    test_features[np.where(test_labels[:] == 1), 1],
    marker="o",
    facecolors="r",
    edgecolors="w",
    label="B test",
)

plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0)
plt.title("Ad hoc dataset for classification")

plt.show()
../_images/tutorials_03_quantum_kernel_3_0.png

With our training and testing datasets ready, we set up the FidelityQuantumKernel class to calculate a kernel matrix using the ZZFeatureMap. We use the reference implementation of the Sampler primitive and the ComputeUncompute fidelity that computes overlaps between states. These are the default values and if you don’t pass a Sampler or Fidelity instance, the same objects will be created automatically for you.

[3]:
adhoc_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement="linear")
sampler = Sampler()
fidelity = ComputeUncompute(sampler=sampler)
adhoc_kernel = FidelityQuantumKernel(fidelity=fidelity, feature_map=adhoc_feature_map)

The scikit-learn SVC algorithm allows us to define a custom kernel in two ways: by providing the kernel as a callable function or by precomputing the kernel matrix. We can do either of these using the FidelityQuantumKernel class in qiskit.

Следующий код предоставляет ядро в качестве вызываемой функции:

[4]:
adhoc_svc = SVC(kernel=adhoc_kernel.evaluate)
adhoc_svc.fit(train_features, train_labels)
adhoc_score = adhoc_svc.score(test_features, test_labels)

print(f"Callable kernel classification test score: {adhoc_score}")
Callable kernel classification test score: 1.0

Следующий код предварительно вычисляет и выводит в графическом виде данные об обучении и тестирует ядерные матрицы, прежде чем передать их алгоритму scikit-learn ``svc`:

[5]:
adhoc_matrix_train = adhoc_kernel.evaluate(x_vec=train_features)
adhoc_matrix_test = adhoc_kernel.evaluate(x_vec=test_features, y_vec=train_features)

fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].imshow(
    np.asmatrix(adhoc_matrix_train), interpolation="nearest", origin="upper", cmap="Blues"
)
axs[0].set_title("Ad hoc training kernel matrix")
axs[1].imshow(np.asmatrix(adhoc_matrix_test), interpolation="nearest", origin="upper", cmap="Reds")
axs[1].set_title("Ad hoc testing kernel matrix")
plt.show()

adhoc_svc = SVC(kernel="precomputed")
adhoc_svc.fit(adhoc_matrix_train, train_labels)
adhoc_score = adhoc_svc.score(adhoc_matrix_test, test_labels)

print(f"Precomputed kernel classification test score: {adhoc_score}")
../_images/tutorials_03_quantum_kernel_9_0.png
Precomputed kernel classification test score: 1.0

Qiskit Machine Learning also contains the QSVC class that extends the SVC class from scikit-learn, that can be used as follows:

[6]:
qsvc = QSVC(quantum_kernel=adhoc_kernel)
qsvc.fit(train_features, train_labels)
qsvc_score = qsvc.score(test_features, test_labels)

print(f"QSVC classification test score: {qsvc_score}")
QSVC classification test score: 1.0

Кластеризация

Для нашего примера кластеризации мы снова будем использовать набор данных ad hoc dataset из статьи Supervised learning with quantum enhanced feature spaces, и алгоритм кластеризации scikit-learn spectral.

Мы создадим набор данных с большим разрывом между двумя классами, и, поскольку кластеризация является заданием неконтролируемого (unsupervised) машинного обучения, нам не нужна тестовая выборка.

[7]:
adhoc_dimension = 2
train_features, train_labels, test_features, test_labels, adhoc_total = ad_hoc_data(
    training_size=25,
    test_size=0,
    n=adhoc_dimension,
    gap=0.6,
    plot_data=False,
    one_hot=False,
    include_sample_total=True,
)

plt.figure(figsize=(5, 5))
plt.ylim(0, 2 * np.pi)
plt.xlim(0, 2 * np.pi)
plt.imshow(
    np.asmatrix(adhoc_total).T,
    interpolation="nearest",
    origin="lower",
    cmap="RdBu",
    extent=[0, 2 * np.pi, 0, 2 * np.pi],
)
plt.scatter(
    train_features[np.where(train_labels[:] == 0), 0],
    train_features[np.where(train_labels[:] == 0), 1],
    marker="s",
    facecolors="w",
    edgecolors="b",
    label="A",
)
plt.scatter(
    train_features[np.where(train_labels[:] == 1), 0],
    train_features[np.where(train_labels[:] == 1), 1],
    marker="o",
    facecolors="w",
    edgecolors="r",
    label="B",
)

plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0)
plt.title("Ad hoc dataset for clustering")

plt.show()
../_images/tutorials_03_quantum_kernel_13_0.png

We again set up the FidelityQuantumKernel class to calculate a kernel matrix using the ZZFeatureMap, and the default values this time.

[8]:
adhoc_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement="linear")

adhoc_kernel = FidelityQuantumKernel(feature_map=adhoc_feature_map)

The scikit-learn spectral clustering algorithm allows us to define a custom kernel in two ways: by providing the kernel as a callable function or by precomputing the kernel matrix. Using the FidelityQuantumKernel class in Qiskit Machine Learning, we can only use the latter.

Следующий код предварительно вычисляет и представляет в графическом виде ядерные матрицы перед передачей их в алгоритм спектральной кластеризации scikit-learn, и подсчитывает метки с помощью нормализованной общей информацию, так как мы априори знаем метки классов.

[9]:
adhoc_matrix = adhoc_kernel.evaluate(x_vec=train_features)

plt.figure(figsize=(5, 5))
plt.imshow(np.asmatrix(adhoc_matrix), interpolation="nearest", origin="upper", cmap="Greens")
plt.title("Ad hoc clustering kernel matrix")
plt.show()

adhoc_spectral = SpectralClustering(2, affinity="precomputed")
cluster_labels = adhoc_spectral.fit_predict(adhoc_matrix)
cluster_score = normalized_mutual_info_score(cluster_labels, train_labels)

print(f"Clustering score: {cluster_score}")
../_images/tutorials_03_quantum_kernel_17_0.png
Clustering score: 0.7287008798015754

scikit-learn имеет и другие алгоритмы, использующие предварительно рассчитанную ядерную матрицу. Вот некоторые из них:

[10]:
import qiskit.tools.jupyter

%qiskit_version_table
%qiskit_copyright

Version Information

Qiskit SoftwareVersion
qiskit-terra0.22.0
qiskit-aer0.11.0
qiskit-ignis0.7.0
qiskit0.33.0
qiskit-machine-learning0.5.0
System information
Python version3.7.9
Python compilerMSC v.1916 64 bit (AMD64)
Python builddefault, Aug 31 2020 17:10:11
OSWindows
CPUs4
Memory (Gb)31.837730407714844
Mon Oct 10 12:01:53 2022 GMT Daylight Time

This code is a part of Qiskit

© Copyright IBM 2017, 2022.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.