Spanish
Idiomas
English
Bengali
French
Hindi
Italian
Japanese
Korean
Malayalam
Russian
Spanish
Tamil
Turkish
Vietnamese
Shortcuts

Nota

Esta página fue generada a partir de docs/tutorials/02_neural_network_classifier_and_regressor.ipynb.

Clasificador y Regresor de Redes Neuronales

En este tutorial mostramos cómo se utiliza el NeuralNetworkClassifier y el NeuralNetworkRegressor. Ambos toman como entrada una NeuralNetwork (Cuántica) y la aprovechan en un contexto específico. En ambos casos también ofrecemos una variante preconfigurada para mayor comodidad, el Clasificador Cuántico Variacional (Variational Quantum Classifier, VQC) y el Regresor Cuántico Variacional (Variational Quantum Regressor, VQR). El tutorial está estructurado de la siguiente manera:

  1. Clasificación

    • Clasificación con un OpflowQNN

    • Clasificación con un CircuitQNN

    • Clasificador Cuántico Variacional (Variational Quantum Classifier, VQC)

  2. Regresión

    • Regresión con un OpflowQNN

    • Regresor Cuántico Variacional (Variational Quantum Regressor, VQR)

[1]:
import numpy as np
import matplotlib.pyplot as plt

from qiskit import Aer, QuantumCircuit
from qiskit.opflow import Z, I, StateFn
from qiskit.utils import QuantumInstance
from qiskit.circuit import Parameter
from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap
from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B

from qiskit_machine_learning.neural_networks import TwoLayerQNN, CircuitQNN
from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier, VQC
from qiskit_machine_learning.algorithms.regressors import NeuralNetworkRegressor, VQR

from typing import Union

from qiskit_machine_learning.exceptions import QiskitMachineLearningError

from IPython.display import clear_output
[2]:
quantum_instance = QuantumInstance(Aer.get_backend('aer_simulator'), shots=1024)

Clasificación

Preparamos un conjunto de datos de clasificación simple para ilustrar los siguientes algoritmos.

[3]:
num_inputs = 2
num_samples = 20
X = 2*np.random.rand(num_samples, num_inputs) - 1
y01 = 1*(np.sum(X, axis=1) >= 0)  # in { 0,  1}
y = 2*y01-1                       # in {-1, +1}
y_one_hot = np.zeros((num_samples, 2))
for i in range(num_samples):
    y_one_hot[i, y01[i]] = 1

for x, y_target in zip(X, y):
    if y_target == 1:
        plt.plot(x[0], x[1], 'bo')
    else:
        plt.plot(x[0], x[1], 'go')
plt.plot([-1, 1], [1, -1], '--', color='black')
plt.show()
../_images/tutorials_02_neural_network_classifier_and_regressor_4_0.png

Clasificación con un OpflowQNN

Primero mostramos cómo se puede usar un OpflowQNN para la clasificación dentro de un NeuralNetworkClassifier. En este contexto, se espera que el OpflowQNN devuelva una salida unidimensional en \([-1, +1]\). Esto solo funciona para la clasificación binaria y asignamos las dos clases a \(\{-1, +1\}\). Para mayor comodidad, utilizamos el TwoLayerQNN, que es un tipo especial de OpflowQNN definido a través de un mapa de características y un ansatz.

[4]:
# construct QNN
opflow_qnn = TwoLayerQNN(num_inputs, quantum_instance=quantum_instance)
[5]:
# QNN maps inputs to [-1, +1]
opflow_qnn.forward(X[0, :], np.random.rand(opflow_qnn.num_weights))
[5]:
array([[0.47265625]])

Agregaremos una función de devolución de llamada nombrada callback_graph. Esto se llamará para cada iteración del optimizador y se le pasarán dos parámetros: los pesos actuales y el valor de la función objetivo en esos pesos. Para nuestra función, agregamos el valor de la función objetivo a una matriz para poder trazar la iteración frente al valor de la función objetivo y actualizar la gráfica con cada iteración. Sin embargo, puedes hacer lo que desees con una función de devolución de llamada siempre y cuando se pasen los dos parámetros mencionados.

[6]:
# callback function that draws a live plot when the .fit() method is called
def callback_graph(weights, obj_func_eval):
    clear_output(wait=True)
    objective_func_vals.append(obj_func_eval)
    plt.title("Objective function value against iteration")
    plt.xlabel("Iteration")
    plt.ylabel("Objective function value")
    plt.plot(range(len(objective_func_vals)), objective_func_vals)
    plt.show()
[7]:
# construct neural network classifier
opflow_classifier = NeuralNetworkClassifier(opflow_qnn, optimizer=COBYLA(), callback=callback_graph)
[8]:
# create empty array for callback to store evaluations of the objective function
objective_func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)

# fit classifier to data
opflow_classifier.fit(X, y)

# return to default figsize
plt.rcParams["figure.figsize"] = (6, 4)

# score classifier
opflow_classifier.score(X, y)
../_images/tutorials_02_neural_network_classifier_and_regressor_11_0.png
[8]:
0.5
[9]:
# evaluate data points
y_predict = opflow_classifier.predict(X)

# plot results
# red == wrongly classified
for x, y_target, y_p in zip(X, y, y_predict):
    if y_target == 1:
        plt.plot(x[0], x[1], 'bo')
    else:
        plt.plot(x[0], x[1], 'go')
    if y_target != y_p:
        plt.scatter(x[0], x[1], s=200, facecolors='none', edgecolors='r', linewidths=2)
plt.plot([-1, 1], [1, -1], '--', color='black')
plt.show()
../_images/tutorials_02_neural_network_classifier_and_regressor_12_0.png

Clasificación con un CircuitQNN

A continuación, mostramos cómo se puede utilizar un CircuitQNN para la clasificación dentro de un NeuralNetworkClassifier. En este contexto, se espera que el CircuitQNN devuelva un vector de probabilidad \(d\)-dimensional como salida, donde \(d\) denota el número de clases. El muestreo de un QuantumCircuit da como resultado automáticamente una distribución de probabilidad y solo necesitamos definir un mapeo de las cadenas de bits medidas a las diferentes clases. Para la clasificación binaria usamos el mapeo de paridad.

[10]:
# construct feature map
feature_map = ZZFeatureMap(num_inputs)

# construct ansatz
ansatz = RealAmplitudes(num_inputs, reps=1)

# construct quantum circuit
qc = QuantumCircuit(num_inputs)
qc.append(feature_map, range(num_inputs))
qc.append(ansatz, range(num_inputs))
qc.decompose().draw(output='mpl')
[10]:
../_images/tutorials_02_neural_network_classifier_and_regressor_14_0.png
[11]:
# parity maps bitstrings to 0 or 1
def parity(x):
    return '{:b}'.format(x).count('1') % 2
output_shape = 2  # corresponds to the number of classes, possible outcomes of the (parity) mapping.
[12]:
# construct QNN
circuit_qnn = CircuitQNN(circuit=qc,
                         input_params=feature_map.parameters,
                         weight_params=ansatz.parameters,
                         interpret=parity,
                         output_shape=output_shape,
                         quantum_instance=quantum_instance)
[13]:
# construct classifier
circuit_classifier = NeuralNetworkClassifier(neural_network=circuit_qnn,
                                             optimizer=COBYLA(),
                                             callback=callback_graph)
[14]:
# create empty array for callback to store evaluations of the objective function
objective_func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)

# fit classifier to data
circuit_classifier.fit(X, y01)

# return to default figsize
plt.rcParams["figure.figsize"] = (6, 4)

# score classifier
circuit_classifier.score(X, y01)
../_images/tutorials_02_neural_network_classifier_and_regressor_18_0.png
[14]:
0.65
[15]:
# evaluate data points
y_predict = circuit_classifier.predict(X)

# plot results
# red == wrongly classified
for x, y_target, y_p in zip(X, y01, y_predict):
    if y_target == 1:
        plt.plot(x[0], x[1], 'bo')
    else:
        plt.plot(x[0], x[1], 'go')
    if y_target != y_p:
        plt.scatter(x[0], x[1], s=200, facecolors='none', edgecolors='r', linewidths=2)
plt.plot([-1, 1], [1, -1], '--', color='black')
plt.show()
../_images/tutorials_02_neural_network_classifier_and_regressor_19_0.png

Clasificador Cuántico Variacional (Variational Quantum Classifier, VQC)

El VQC es una variante especial del NeuralNetworkClassifier con un CircuitQNN. Aplica un mapeo de paridad (o extensiones a múltiples clases) para mapear desde la cadena de bits hasta la clasificación, lo que da como resultado un vector de probabilidad, que se interpreta como un resultado codificado one-hot. De forma predeterminada, aplica esta función CrossEntropyLoss que espera que las etiquetas se proporcionen en un formato codificado one-hot y también devolverá predicciones en ese formato.

[16]:
# construct feature map, ansatz, and optimizer
feature_map = ZZFeatureMap(num_inputs)
ansatz = RealAmplitudes(num_inputs, reps=1)

# construct variational quantum classifier
vqc = VQC(feature_map=feature_map,
          ansatz=ansatz,
          loss='cross_entropy',
          optimizer=COBYLA(),
          quantum_instance=quantum_instance,
          callback=callback_graph)
[17]:
# create empty array for callback to store evaluations of the objective function
objective_func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)

# fit classifier to data
vqc.fit(X, y_one_hot)

# return to default figsize
plt.rcParams["figure.figsize"] = (6, 4)

# score classifier
vqc.score(X, y_one_hot)
../_images/tutorials_02_neural_network_classifier_and_regressor_22_0.png
[17]:
0.6
[18]:
# evaluate data points
y_predict = vqc.predict(X)

# plot results
# red == wrongly classified
for x, y_target, y_p in zip(X, y_one_hot, y_predict):
    if y_target[0] == 1:
        plt.plot(x[0], x[1], 'bo')
    else:
        plt.plot(x[0], x[1], 'go')
    if not np.all(y_target == y_p):
        plt.scatter(x[0], x[1], s=200, facecolors='none', edgecolors='r', linewidths=2)
plt.plot([-1, 1], [1, -1], '--', color='black')
plt.show()
../_images/tutorials_02_neural_network_classifier_and_regressor_23_0.png

Regresión

Preparamos un conjunto de datos de regresión simple para ilustrar los siguientes algoritmos.

[19]:
num_samples = 20
eps = 0.2
lb, ub = -np.pi, np.pi
X_ = np.linspace(lb, ub, num=50).reshape(50, 1)
f = lambda x: np.sin(x)

X = (ub - lb)*np.random.rand(num_samples, 1) + lb
y = f(X[:,0]) + eps*(2*np.random.rand(num_samples)-1)

plt.plot(X_, f(X_), 'r--')
plt.plot(X, y, 'bo')
plt.show()
../_images/tutorials_02_neural_network_classifier_and_regressor_25_0.png

Regresión con un OpflowQNN

Aquí restringimos la regresión con un OpflowQNN que devuelve valores entre \([-1, +1]\). Se podrían construir modelos más complejos y también multidimensionales, también basados en CircuitQNN pero eso excede el alcance de este tutorial.

[20]:
# construct simple feature map
param_x = Parameter('x')
feature_map = QuantumCircuit(1, name='fm')
feature_map.ry(param_x, 0)

# construct simple ansatz
param_y = Parameter('y')
ansatz = QuantumCircuit(1, name='vf')
ansatz.ry(param_y, 0)

# construct QNN
regression_opflow_qnn = TwoLayerQNN(1, feature_map, ansatz, quantum_instance=quantum_instance)
[21]:
# construct the regressor from the neural network
regressor = NeuralNetworkRegressor(neural_network=regression_opflow_qnn,
                                   loss='l2',
                                   optimizer=L_BFGS_B(),
                                   callback=callback_graph)
[22]:
# create empty array for callback to store evaluations of the objective function
objective_func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)

# fit to data
regressor.fit(X, y)

# return to default figsize
plt.rcParams["figure.figsize"] = (6, 4)

# score the result
regressor.score(X, y)
../_images/tutorials_02_neural_network_classifier_and_regressor_29_0.png
[22]:
0.9696567935175576
[23]:
# plot target function
plt.plot(X_, f(X_), 'r--')

# plot data
plt.plot(X, y, 'bo')

# plot fitted line
y_ = regressor.predict(X_)
plt.plot(X_, y_, 'g-')
plt.show()
../_images/tutorials_02_neural_network_classifier_and_regressor_30_0.png

Regresión con el Regresor Cuántico Variacional (Variational Quantum Regressor, VQR)

Similar al VQC para la clasificación, el VQR es una variante especial del NeuralNetworkRegressor con un OpflowQNN. De forma predeterminada, considera la función L2Loss para minimizar el error cuadrático medio entre las predicciones y los objetivos.

[24]:
vqr = VQR(feature_map=feature_map,
          ansatz=ansatz,
          optimizer=L_BFGS_B(),
          quantum_instance=quantum_instance,
          callback=callback_graph)
[25]:
# create empty array for callback to store evaluations of the objective function
objective_func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)

# fit regressor
vqr.fit(X, y)

# return to default figsize
plt.rcParams["figure.figsize"] = (6, 4)

# score result
vqr.score(X, y)
../_images/tutorials_02_neural_network_classifier_and_regressor_33_0.png
[25]:
0.9684356876095139
[26]:
# plot target function
plt.plot(X_, f(X_), 'r--')

# plot data
plt.plot(X, y, 'bo')

# plot fitted line
y_ = vqr.predict(X_)
plt.plot(X_, y_, 'g-')
plt.show()
../_images/tutorials_02_neural_network_classifier_and_regressor_34_0.png
[27]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright

Version Information

Qiskit SoftwareVersion
qiskit-terra0.19.0.dev0+803bd0d
qiskit-aer0.8.2
qiskit-machine-learning0.3.0
System information
Python3.9.6 (default, Aug 18 2021, 15:44:49) [MSC v.1916 64 bit (AMD64)]
OSWindows
CPUs4
Memory (Gb)11.83804702758789
Sun Aug 29 01:09:16 2021 Hora de verano romance

This code is a part of Qiskit

© Copyright IBM 2017, 2021.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.