RXXGate¶
- class RXXGate(theta, label=None)[source]¶
Bases:
Gate
A parametric 2-qubit \(X \otimes X\) interaction (rotation about XX).
This gate is symmetric, and is maximally entangling at \(\theta = \pi/2\).
Can be applied to a
QuantumCircuit
with therxx()
method.Circuit Symbol:
┌─────────┐ q_0: ┤1 ├ │ Rxx(ϴ) │ q_1: ┤0 ├ └─────────┘
Matrix Representation:
\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{XX}(\theta) = \exp\left(-i \th X{\otimes}X\right) = \begin{pmatrix} \cos\left(\th\right) & 0 & 0 & -i\sin\left(\th\right) \\ 0 & \cos\left(\th\right) & -i\sin\left(\th\right) & 0 \\ 0 & -i\sin\left(\th\right) & \cos\left(\th\right) & 0 \\ -i\sin\left(\th\right) & 0 & 0 & \cos\left(\th\right) \end{pmatrix}\end{split}\end{aligned}\end{align} \]Examples:
\[R_{XX}(\theta = 0) = I\]\[R_{XX}(\theta = \pi) = i X \otimes X\]\[\begin{split}R_{XX}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & -i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ -i & 0 & 0 & 1 \end{pmatrix}\end{split}\]Create new RXX gate.
Methods Defined Here
Return inverse RXX gate (i.e.
Raise gate to a power.
Attributes
- condition_bits¶
Get Clbits in condition.
- decompositions¶
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
- definition¶
Return definition in terms of other basic gates.
- duration¶
Get the duration.
- label¶
Return instruction label
- name¶
Return the name.
- num_clbits¶
Return the number of clbits.
- num_qubits¶
Return the number of qubits.
- params¶
return instruction params.
- unit¶
Get the time unit of duration.