Source code for qiskit.opflow.expectations.aer_pauli_expectation

# This code is part of Qiskit.
# (C) Copyright IBM 2020, 2023.
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""AerPauliExpectation Class"""

import logging
from functools import reduce
from operator import add
from typing import Union

from qiskit.exceptions import MissingOptionalLibraryError
from qiskit.opflow.expectations.expectation_base import ExpectationBase
from qiskit.opflow.list_ops.composed_op import ComposedOp
from qiskit.opflow.list_ops.list_op import ListOp
from qiskit.opflow.list_ops.summed_op import SummedOp
from qiskit.opflow.operator_base import OperatorBase
from qiskit.opflow.primitive_ops.pauli_op import PauliOp
from qiskit.opflow.primitive_ops.pauli_sum_op import PauliSumOp
from qiskit.opflow.state_fns.circuit_state_fn import CircuitStateFn
from qiskit.opflow.state_fns.operator_state_fn import OperatorStateFn
from qiskit.quantum_info import SparsePauliOp
from qiskit.utils.deprecation import deprecate_func

logger = logging.getLogger(__name__)

[docs]class AerPauliExpectation(ExpectationBase): r"""An Expectation converter for using Aer's operator snapshot to take expectations of quantum state circuits over Pauli observables. """ @deprecate_func( since="0.24.0", additional_msg="For code migration guidelines, visit", ) def __init__(self) -> None: super().__init__()
[docs] def convert(self, operator: OperatorBase) -> OperatorBase: """Accept an Operator and return a new Operator with the Pauli measurements replaced by AerSnapshot-based expectation circuits. Args: operator: The operator to convert. If it contains non-hermitian terms, the operator is decomposed into hermitian and anti-hermitian parts. Returns: The converted operator. """ if isinstance(operator, OperatorStateFn) and operator.is_measurement: if isinstance(operator.primitive, ListOp): is_herm = all((op.is_hermitian() for op in operator.primitive.oplist)) else: is_herm = operator.primitive.is_hermitian() if not is_herm: pauli_sum_re = ( self._replace_pauli_sums( 1 / 2 * (operator.primitive + operator.primitive.adjoint()).reduce() ) * operator.coeff ) pauli_sum_im = ( self._replace_pauli_sums( 1 / 2j * (operator.primitive - operator.primitive.adjoint()).reduce() ) * operator.coeff ) pauli_sum = (pauli_sum_re + 1j * pauli_sum_im).reduce() else: pauli_sum = self._replace_pauli_sums(operator.primitive) * operator.coeff return pauli_sum elif isinstance(operator, ListOp): return operator.traverse(self.convert) else: return operator
@classmethod def _replace_pauli_sums(cls, operator): try: from qiskit.providers.aer.library import SaveExpectationValue except ImportError as ex: raise MissingOptionalLibraryError( libname="qiskit-aer", name="AerPauliExpectation", pip_install="pip install qiskit-aer", ) from ex # The 'expval_measurement' label on the save instruction is special - the # CircuitSampler will look for it to know that the circuit is a Expectation # measurement, and not simply a # circuit to replace with a DictStateFn if operator.__class__ == ListOp: return operator.traverse(cls._replace_pauli_sums) if isinstance(operator, PauliSumOp): save_instruction = SaveExpectationValue(operator.primitive, "expval_measurement") return CircuitStateFn( save_instruction, coeff=operator.coeff, is_measurement=True, from_operator=True ) # Change to Pauli representation if necessary if {"Pauli"} != operator.primitive_strings(): logger.warning( "Measured Observable is not composed of only Paulis, converting to " "Pauli representation, which can be expensive." ) # Setting massive=False because this conversion is implicit. User can perform this # action on the Observable with massive=True explicitly if they so choose. operator = operator.to_pauli_op(massive=False) if isinstance(operator, SummedOp): sparse_pauli = reduce( add, (meas.coeff * SparsePauliOp(meas.primitive) for meas in operator.oplist) ) save_instruction = SaveExpectationValue(sparse_pauli, "expval_measurement") return CircuitStateFn( save_instruction, coeff=operator.coeff, is_measurement=True, from_operator=True ) if isinstance(operator, PauliOp): sparse_pauli = operator.coeff * SparsePauliOp(operator.primitive) save_instruction = SaveExpectationValue(sparse_pauli, "expval_measurement") return CircuitStateFn(save_instruction, is_measurement=True, from_operator=True) raise TypeError( f"Conversion of OperatorStateFn of {operator.__class__.__name__} is not defined." )
[docs] def compute_variance(self, exp_op: OperatorBase) -> Union[list, float]: r""" Compute the variance of the expectation estimator. Because Aer takes this expectation with matrix multiplication, the estimation is exact and the variance is always 0, but we need to return those values in a way which matches the Operator's structure. Args: exp_op: The full expectation value Operator after sampling. Returns: The variances or lists thereof (if exp_op contains ListOps) of the expectation value estimation, equal to 0. """ # Need to do this to mimic Op structure def sum_variance(operator): if isinstance(operator, ComposedOp): return 0.0 elif isinstance(operator, ListOp): return operator.combo_fn([sum_variance(op) for op in operator.oplist]) raise TypeError(f"Variance cannot be computed for {operator.__class__.__name__}.") return sum_variance(exp_op)