Portuguese
Idiomas
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

InnerProduct

class InnerProduct(num_qubits)[código fonte]

Bases: QuantumCircuit

A 2n-qubit Boolean function that computes the inner product of two n-qubit vectors over \(F_2\).

This implementation is a phase oracle which computes the following transform.

\[\mathcal{IP}_{2n} : F_2^{2n} \rightarrow {-1, 1} \mathcal{IP}_{2n}(x_1, \cdots, x_n, y_1, \cdots, y_n) = (-1)^{x.y}\]

The corresponding unitary is a diagonal, which induces a -1 phase on any inputs where the inner product of the top and bottom registers is 1. Otherwise it keeps the input intact.

q0_0: ─■──────────
       │
q0_1: ─┼──■───────
       │  │
q0_2: ─┼──┼──■────
       │  │  │
q0_3: ─┼──┼──┼──■─
       │  │  │  │
q1_0: ─■──┼──┼──┼─
          │  │  │
q1_1: ────■──┼──┼─
             │  │
q1_2: ───────■──┼─
                │
q1_3: ──────────■─
Reference Circuit:

Return a circuit to compute the inner product of 2 n-qubit registers.

Parâmetros

num_qubits (int) – width of top and bottom registers (half total circuit width)

Attributes

ancillas

Returns a list of ancilla bits in the order that the registers were added.

Tipo de retorno

List[AncillaQubit]

calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form

{“gate_name”: {(qubits, params): schedule}}

Tipo de retorno

dict

clbits

Returns a list of classical bits in the order that the registers were added.

Tipo de retorno

List[Clbit]

data

Return the circuit data (instructions and context).

Retorno

a list-like object containing the CircuitInstructions for each instruction.

Tipo de retorno

QuantumCircuitData

extension_lib = 'include "qelib1.inc";'
global_phase

Return the global phase of the circuit in radians.

Tipo de retorno

Union[ParameterExpression, float]

header = 'OPENQASM 2.0;'
instances = 94
metadata

The user provided metadata associated with the circuit

The metadata for the circuit is a user provided dict of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

Tipo de retorno

dict

num_ancillas

Return the number of ancilla qubits.

Tipo de retorno

int

num_clbits

Return number of classical bits.

Tipo de retorno

int

num_parameters

The number of parameter objects in the circuit.

Tipo de retorno

int

num_qubits

Return number of qubits.

Tipo de retorno

int

op_start_times

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

Tipo de retorno

List[int]

Retorno

List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data.

Levanta

AttributeError – When circuit is not scheduled.

parameters

The parameters defined in the circuit.

This attribute returns the Parameter objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector are still sorted numerically.

Examples

The snippet below shows that insertion order of parameters does not matter.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters  # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])

Bear in mind that alphabetical sorting might be unituitive when it comes to numbers. The literal «10» comes before «2» in strict alphabetical sorting.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
   ┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
   └─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])

To respect numerical sorting, a ParameterVector can be used.


>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
...     circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
    ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
    ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
    ..., ParameterVectorElement(x[11])
])
Tipo de retorno

ParameterView

Retorno

The sorted Parameter objects in the circuit.

prefix = 'circuit'
qubits

Returns a list of quantum bits in the order that the registers were added.

Tipo de retorno

List[Qubit]