Portuguese
Idiomas
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

GSLS

class GSLS(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50)[código fonte]

Bases: Optimizer

Gaussian-smoothed Line Search.

An implementation of the line search algorithm described in https://arxiv.org/pdf/1905.01332.pdf, using gradient approximation based on Gaussian-smoothed samples on a sphere.

Nota

This component has some function that is normally random. If you want to reproduce behavior then you should set the random number generator seed in the algorithm_globals (qiskit.utils.algorithm_globals.random_seed = seed).

Parâmetros
  • maxiter (int) – Maximum number of iterations.

  • max_eval (int) – Maximum number of evaluations.

  • disp (bool) – Set to True to display convergence messages.

  • sampling_radius (float) – Sampling radius to determine gradient estimate.

  • sample_size_factor (int) – The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer.

  • initial_step_size (float) – Initial step size for the descent algorithm.

  • min_step_size (float) – Minimum step size for the descent algorithm.

  • step_size_multiplier (float) – Step size reduction after unsuccessful steps, in the interval (0, 1).

  • armijo_parameter (float) – Armijo parameter for sufficient decrease criterion, in the interval (0, 1).

  • min_gradient_norm (float) – If the gradient norm is below this threshold, the algorithm stops.

  • max_failed_rejection_sampling (int) – Maximum number of attempts to sample points within bounds.

Methods

get_support_level

Return support level dictionary.

gradient_approximation

Construct gradient approximation from given sample.

gradient_num_diff

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

ls_optimize

Run the line search optimization.

minimize

Minimize the scalar function.

print_options

Print algorithm-specific options.

sample_points

Sample num_points points around x on the n-sphere of specified radius.

sample_set

Construct sample set of given size.

set_max_evals_grouped

Set max evals grouped

set_options

Sets or updates values in the options dictionary.

wrap_function

Wrap the function to implicitly inject the args at the call of the function.

Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings