Portuguese
Idiomas
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

BOBYQA

class BOBYQA(maxiter=1000)[código fonte]

Bases: Optimizer

Bound Optimization BY Quadratic Approximation algorithm.

BOBYQA finds local solutions to nonlinear, non-convex minimization problems with optional bound constraints, without requirement of derivatives of the objective function.

Uses skquant.opt installed with pip install scikit-quant. For further detail, please refer to https://github.com/scikit-quant/scikit-quant and https://qat4chem.lbl.gov/software.

Parâmetros

maxiter (int) – Maximum number of function evaluations.

Levanta

MissingOptionalLibraryError – scikit-quant not installed

Methods

get_support_level

Returns support level dictionary.

gradient_num_diff

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

minimize

Minimize the scalar function.

print_options

Print algorithm-specific options.

set_max_evals_grouped

Set max evals grouped

set_options

Sets or updates values in the options dictionary.

wrap_function

Wrap the function to implicitly inject the args at the call of the function.

Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

settings