BOBYQA¶
- class BOBYQA(maxiter=1000)[código fonte]¶
Bases:
Optimizer
Bound Optimization BY Quadratic Approximation algorithm.
BOBYQA finds local solutions to nonlinear, non-convex minimization problems with optional bound constraints, without requirement of derivatives of the objective function.
Uses skquant.opt installed with pip install scikit-quant. For further detail, please refer to https://github.com/scikit-quant/scikit-quant and https://qat4chem.lbl.gov/software.
- Parâmetros
maxiter (int) – Maximum number of function evaluations.
- Levanta
MissingOptionalLibraryError – scikit-quant not installed
Methods
Returns support level dictionary.
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Minimize the scalar function.
Print algorithm-specific options.
Set max evals grouped
Sets or updates values in the options dictionary.
Wrap the function to implicitly inject the args at the call of the function.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶