Portuguese
Idiomas
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

Código fonte de qiskit.providers.ibmq.runner_result

# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Circuit-runner result class"""

from typing import List, Union
import json

from qiskit.result import Result, QuasiDistribution
from qiskit.result.postprocess import _hex_to_bin
from qiskit.exceptions import QiskitError

from .runtime import ResultDecoder


[documentos]class RunnerResult(Result, ResultDecoder): """Result class for Qiskit Runtime program circuit-runner."""
[documentos] @classmethod def decode(cls, data: str) -> 'RunnerResult': """Decoding for results from Qiskit runtime jobs.""" return cls.from_dict(json.loads(data))
[documentos] def get_quasiprobabilities( self, experiment: Union[int, List] = None ) -> Union[QuasiDistribution, List[QuasiDistribution]]: """Get quasiprobabilites associated with one or more experiments. Parameters: experiment: Indices of experiments to grab quasiprobabilities from. Returns: A single distribution or a list of distributions. Raises: QiskitError: If experiment result doesn't contain quasiprobabilities. """ if experiment is None: exp_keys = range(len(self.results)) else: exp_keys = [experiment] # type: ignore[assignment] dict_list = [] for key in exp_keys: if 'quasiprobabilities' in self.data(key).keys(): shots = self.results[key].shots hex_quasi = self.results[key].data.quasiprobabilities bit_lenth = len(self.results[key].header.final_measurement_mapping) quasi = {} for hkey, val in hex_quasi.items(): quasi[_hex_to_bin(hkey).zfill(bit_lenth)] = val out = QuasiDistribution(quasi, shots) out.shots = shots dict_list.append(out) else: raise QiskitError('No quasiprobabilities for experiment "{}"'.format(repr(key))) # Return first item of dict_list if size is 1 if len(dict_list) == 1: return dict_list[0] else: return dict_list