Portuguese
Idiomas
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

Código fonte de qiskit.circuit.library.standard_gates.rx

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Rotation around the X axis."""

import math
from typing import Optional, Union
import numpy

from qiskit.qasm import pi
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.parameterexpression import ParameterValueType


[documentos]class RXGate(Gate): r"""Single-qubit rotation about the X axis. Can be applied to a :class:`~qiskit.circuit.QuantumCircuit` with the :meth:`~qiskit.circuit.QuantumCircuit.rx` method. **Circuit symbol:** .. parsed-literal:: ┌───────┐ q_0: ┤ Rx(ϴ) ├ └───────┘ **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} RX(\theta) = \exp\left(-i \th X\right) = \begin{pmatrix} \cos{\th} & -i\sin{\th} \\ -i\sin{\th} & \cos{\th} \end{pmatrix} """ def __init__(self, theta: ParameterValueType, label: Optional[str] = None): """Create new RX gate.""" super().__init__("rx", 1, [theta], label=label) def _define(self): """ gate rx(theta) a {r(theta, 0) a;} """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .r import RGate q = QuantumRegister(1, "q") qc = QuantumCircuit(q, name=self.name) rules = [(RGate(self.params[0], 0), [q[0]], [])] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[documentos] def control( self, num_ctrl_qubits: int = 1, label: Optional[str] = None, ctrl_state: Optional[Union[str, int]] = None, ): """Return a (multi-)controlled-RX gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ if num_ctrl_qubits == 1: gate = CRXGate(self.params[0], label=label, ctrl_state=ctrl_state) gate.base_gate.label = self.label return gate return super().control(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
[documentos] def inverse(self): r"""Return inverted RX gate. :math:`RX(\lambda)^{\dagger} = RX(-\lambda)` """ return RXGate(-self.params[0])
def __array__(self, dtype=None): """Return a numpy.array for the RX gate.""" cos = math.cos(self.params[0] / 2) sin = math.sin(self.params[0] / 2) return numpy.array([[cos, -1j * sin], [-1j * sin, cos]], dtype=dtype)
[documentos]class CRXGate(ControlledGate): r"""Controlled-RX gate. Can be applied to a :class:`~qiskit.circuit.QuantumCircuit` with the :meth:`~qiskit.circuit.QuantumCircuit.crx` method. **Circuit symbol:** .. parsed-literal:: q_0: ────■──── ┌───┴───┐ q_1: ┤ Rx(ϴ) ├ └───────┘ **Matrix representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} CRX(\theta)\ q_0, q_1 = I \otimes |0\rangle\langle 0| + RX(\theta) \otimes |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos{\th} & 0 & -i\sin{\th} \\ 0 & 0 & 1 & 0 \\ 0 & -i\sin{\th} & 0 & \cos{\th} \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_1. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌───────┐ q_0: ┤ Rx(ϴ) ├ └───┬───┘ q_1: ────■──── .. math:: \newcommand{\th}{\frac{\theta}{2}} CRX(\theta)\ q_1, q_0 = |0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RX(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos{\th} & -i\sin{\th} \\ 0 & 0 & -i\sin{\th} & \cos{\th} \end{pmatrix} """ def __init__( self, theta: ParameterValueType, label: Optional[str] = None, ctrl_state: Optional[Union[str, int]] = None, ): """Create new CRX gate.""" super().__init__( "crx", 2, [theta], num_ctrl_qubits=1, label=label, ctrl_state=ctrl_state, base_gate=RXGate(theta), ) def _define(self): """ gate cu3(theta,phi,lambda) c, t { u1(pi/2) t; cx c,t; u3(-theta/2,0,0) t; cx c,t; u3(theta/2,-pi/2,0) t; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u1 import U1Gate from .u3 import U3Gate from .x import CXGate # q_0: ─────────────■───────────────────■──────────────────── # ┌─────────┐┌─┴─┐┌─────────────┐┌─┴─┐┌────────────────┐ # q_1: ┤ U1(π/2) ├┤ X ├┤ U3(0/2,0,0) ├┤ X ├┤ U3(0/2,-π/2,0) ├ # └─────────┘└───┘└─────────────┘└───┘└────────────────┘ q = QuantumRegister(2, "q") qc = QuantumCircuit(q, name=self.name) rules = [ (U1Gate(pi / 2), [q[1]], []), (CXGate(), [q[0], q[1]], []), (U3Gate(-self.params[0] / 2, 0, 0), [q[1]], []), (CXGate(), [q[0], q[1]], []), (U3Gate(self.params[0] / 2, -pi / 2, 0), [q[1]], []), ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[documentos] def inverse(self): """Return inverse CRX gate (i.e. with the negative rotation angle).""" return CRXGate(-self.params[0], ctrl_state=self.ctrl_state)
def __array__(self, dtype=None): """Return a numpy.array for the CRX gate.""" half_theta = float(self.params[0]) / 2 cos = math.cos(half_theta) isin = 1j * math.sin(half_theta) if self.ctrl_state: return numpy.array( [[1, 0, 0, 0], [0, cos, 0, -isin], [0, 0, 1, 0], [0, -isin, 0, cos]], dtype=dtype ) else: return numpy.array( [[cos, 0, -isin, 0], [0, 1, 0, 0], [-isin, 0, cos, 0], [0, 0, 0, 1]], dtype=dtype )