qiskit.opflow.list_ops.TensoredOp¶

class
TensoredOp
(oplist, coeff=1.0, abelian=False)[código fonte]¶ A class for lazily representing tensor products of Operators. Often Operators cannot be efficiently tensored to one another, but may be manipulated further so that they can be later. This class holds logic to indicate that the Operators in
oplist
are meant to be tensored together, and therefore if they reach a point in which they can be, such as after conversion to QuantumCircuits, they can be reduced by tensor product. Parâmetros
oplist (
List
[OperatorBase
]) – The Operators being tensored.coeff (
Union
[complex
,ParameterExpression
]) – A coefficient multiplying the operatorabelian (
bool
) – Indicates whether the Operators inoplist
are known to mutually commute.

__init__
(oplist, coeff=1.0, abelian=False)[código fonte]¶  Parâmetros
oplist (
List
[OperatorBase
]) – The Operators being tensored.coeff (
Union
[complex
,ParameterExpression
]) – A coefficient multiplying the operatorabelian (
bool
) – Indicates whether the Operators inoplist
are known to mutually commute.
Methods
__init__
(oplist[, coeff, abelian]) type oplist
List
[OperatorBase
]
add
(other)Return Operator addition of self and other, overloaded by
+
.adjoint
()Return a new Operator equal to the Operator’s adjoint (conjugate transpose), overloaded by
~
.assign_parameters
(param_dict)Binds scalar values to any Terra
Parameters
in the coefficients or primitives of the Operator, or substitutes oneParameter
for another.bind_parameters
(param_dict)Same as assign_parameters, but maintained for consistency with QuantumCircuit in Terra (which has both assign_parameters and bind_parameters).
compose
(other[, permutation, front])Return Operator Composition between self and other (linear algebrastyle: A@B(x) = A(B(x))), overloaded by
@
.copy
()Return a deep copy of the Operator.
ListOp default combo function i.e. lambda x: x.
equals
(other)Evaluate Equality between Operators, overloaded by
==
.eval
([front])Evaluate the Operator’s underlying function, either on a binary string or another Operator.
exp_i
()Return an
OperatorBase
equivalent to an exponentiation of self * i, e^(i*op).log_i
([massive])Return a
MatrixOp
equivalent to log(H)/i for this operator H.mul
(scalar)Returns the scalar multiplication of the Operator, overloaded by
*
, including support for Terra’sParameters
, which can be bound to values later (viabind_parameters
).neg
()Return the Operator’s negation, effectively just multiplying by 1.0, overloaded by

.permute
(permutation)Permute the qubits of the operator.
power
(exponent)Return Operator composed with self multiple times, overloaded by
**
.Return a set of strings describing the primitives contained in the Operator.
reduce
()Try collapsing the Operator structure, usually after some type of conversion, e.g.
tensor
(other)Return tensor product between self and other, overloaded by
^
.tensorpower
(other)Return tensor product with self multiple times, overloaded by
^
.Returns the quantum circuit, representing the tensored operator.
Returns an equivalent Operator composed of only QuantumCircuitbased primitives, such as
CircuitOp
andCircuitStateFn
.to_matrix
([massive])Return NumPy representation of the Operator.
to_matrix_op
([massive])Returns an equivalent Operator composed of only NumPybased primitives, such as
MatrixOp
andVectorStateFn
.to_pauli_op
([massive])Returns an equivalent Operator composed of only Paulibased primitives, such as
PauliOp
.Returns SciPy sparse matrix representation of the Operator.
traverse
(convert_fn[, coeff])Apply the convert_fn to each node in the oplist.
Attributes
INDENTATION
Whether the Operators in
oplist
are known to commute with one another.The scalar coefficient multiplying the Operator.
The function defining how to combine
oplist
(or Numbers, or NumPy arrays) to produce the Operator’s underlying function.Indicates whether the ListOp or subclass is distributive under composition.
The gradient of
combo_fn
.Return the unique instance id.
The number of qubits over which the Operator is defined.
The list of
OperatorBases
defining the underlying function of this Operator.Return a set of Parameter objects contained in the Operator.
Return settings.

property
abelian
¶ Whether the Operators in
oplist
are known to commute with one another. Tipo de retorno
bool
 Retorna
A bool indicating whether the
oplist
is Abelian.

add
(other)¶ Return Operator addition of self and other, overloaded by
+
. Parâmetros
other (
OperatorBase
) – AnOperatorBase
with the same number of qubits as self, and in the same ‘Operator’, ‘State function’, or ‘Measurement’ category as self (i.e. the same type of underlying function). Tipo de retorno
ListOp
 Retorna
An
OperatorBase
equivalent to the sum of self and other.

adjoint
()¶ Return a new Operator equal to the Operator’s adjoint (conjugate transpose), overloaded by
~
. For StateFns, this also turns the StateFn into a measurement. Tipo de retorno
ListOp
 Retorna
An
OperatorBase
equivalent to the adjoint of self.

assign_parameters
(param_dict)¶ Binds scalar values to any Terra
Parameters
in the coefficients or primitives of the Operator, or substitutes oneParameter
for another. This method differs from Terra’sassign_parameters
in that it also supports lists of values to assign for a giveParameter
, in which case self will be copied for each parameterization in the binding list(s), and all the copies will be returned in anOpList
. If lists of parameterizations are used, everyParameter
in the param_dict must have the same length list of parameterizations. Parâmetros
param_dict (
dict
) – The dictionary ofParameters
to replace, and values or lists of values by which to replace them. Tipo de retorno
OperatorBase
 Retorna
The
OperatorBase
with theParameters
in self replaced by the values orParameters
in param_dict. If param_dict contains parameterization lists, thisOperatorBase
is anOpList
.

bind_parameters
(param_dict)¶ Same as assign_parameters, but maintained for consistency with QuantumCircuit in Terra (which has both assign_parameters and bind_parameters).
 Tipo de retorno
OperatorBase

property
coeff
¶ The scalar coefficient multiplying the Operator.
 Tipo de retorno
Union
[complex
,ParameterExpression
] Retorna
The coefficient.

property
combo_fn
¶ The function defining how to combine
oplist
(or Numbers, or NumPy arrays) to produce the Operator’s underlying function. For example, SummedOp’s combination function is to add all of the Operators inoplist
. Tipo de retorno
Callable
 Retorna
The combination function.

compose
(other, permutation=None, front=False)¶ Return Operator Composition between self and other (linear algebrastyle: A@B(x) = A(B(x))), overloaded by
@
.Note: You must be conscious of Quantum Circuit vs. Linear Algebra ordering conventions. Meaning, X.compose(Y) produces an X∘Y on qubit 0, but would produce a QuantumCircuit which looks like
[Y][X]
Because Terra prints circuits with the initial state at the left side of the circuit.
 Parâmetros
other (
OperatorBase
) – TheOperatorBase
with which to compose self.permutation (
Optional
[List
[int
]]) –List[int]
which defines permutation on other operator.front (
bool
) – If front==True, returnother.compose(self)
.
 Tipo de retorno
OperatorBase
 Retorna
An
OperatorBase
equivalent to the function composition of self and other.

copy
()¶ Return a deep copy of the Operator.
 Tipo de retorno
OperatorBase

static
default_combo_fn
(x)¶ ListOp default combo function i.e. lambda x: x
 Tipo de retorno
Any

property
distributive
¶ Indicates whether the ListOp or subclass is distributive under composition. ListOp and SummedOp are, meaning that (opv @ op) = (opv[0] @ op + opv[1] @ op) (using plus for SummedOp, list for ListOp, etc.), while ComposedOp and TensoredOp do not behave this way.
 Tipo de retorno
bool
 Retorna
A bool indicating whether the ListOp is distributive under composition.

equals
(other)¶ Evaluate Equality between Operators, overloaded by
==
. Only returns True if self and other are of the same representation (e.g. a DictStateFn and CircuitStateFn will never be equal, even if their vector representations are equal), their underlying primitives are equal (this means for ListOps, OperatorStateFns, or EvolvedOps the equality is evaluated recursively downwards), and their coefficients are equal. Parâmetros
other (
OperatorBase
) – TheOperatorBase
to compare to self. Tipo de retorno
bool
 Retorna
A bool equal to the equality of self and other.

eval
(front=None)[código fonte]¶ Evaluate the Operator’s underlying function, either on a binary string or another Operator. A square binary Operator can be defined as a function taking a binary function to another binary function. This method returns the value of that function for a given StateFn or binary string. For example,
op.eval('0110').eval('1110')
can be seen as querying the Operator’s matrix representation by row 6 and column 14, and will return the complex value at those “indices.” Similarly for a StateFn,op.eval('1011')
will return the complex value at row 11 of the vector representation of the StateFn, as all StateFns are defined to be evaluated from Zero implicitly (i.e. it is as if.eval('0000')
is already called implicitly to always “indexing” from column 0).ListOp’s eval recursively evaluates each Operator in
oplist
, and combines the results using the recombination functioncombo_fn
. Parâmetros
front (
Union
[str
,dict
,ndarray
,OperatorBase
,Statevector
,None
]) – The bitstring, dict of bitstrings (with values being coefficients), or StateFn to evaluated by the Operator’s underlying function. Tipo de retorno
Union
[OperatorBase
,complex
] Retorna
The output of the
oplist
Operators’ evaluation function, combined with thecombo_fn
. If either self or front contain properListOps
(not ListOp subclasses), the result is an ndimensional list of complex or StateFn results, resulting from the recursive evaluation by each OperatorBase in the ListOps. Levanta
NotImplementedError – Raised if called for a subclass which is not distributive.
TypeError – Operators with mixed hierarchies, such as a ListOp containing both PrimitiveOps and ListOps, are not supported.
NotImplementedError – Attempting to call ListOp’s eval from a nondistributive subclass.

exp_i
()¶ Return an
OperatorBase
equivalent to an exponentiation of self * i, e^(i*op). Tipo de retorno
OperatorBase

property
grad_combo_fn
¶ The gradient of
combo_fn
. Tipo de retorno
Optional
[Callable
]

property
instance_id
¶ Return the unique instance id.
 Tipo de retorno
int

log_i
(massive=False)¶ Return a
MatrixOp
equivalent to log(H)/i for this operator H. This function is the effective inverse of exp_i, equivalent to finding the Hermitian Operator which produces self when exponentiated. For proper ListOps, applieslog_i
to all ops in oplist. Tipo de retorno
OperatorBase

mul
(scalar)¶ Returns the scalar multiplication of the Operator, overloaded by
*
, including support for Terra’sParameters
, which can be bound to values later (viabind_parameters
). Parâmetros
scalar (
Union
[complex
,ParameterExpression
]) – The real or complex scalar by which to multiply the Operator, or theParameterExpression
to serve as a placeholder for a scalar factor. Tipo de retorno
ListOp
 Retorna
An
OperatorBase
equivalent to product of self and scalar.

neg
()¶ Return the Operator’s negation, effectively just multiplying by 1.0, overloaded by

. Tipo de retorno
OperatorBase
 Retorna
An
OperatorBase
equivalent to the negation of self.

property
num_qubits
¶ The number of qubits over which the Operator is defined. If
op.num_qubits == 5
, thenop.eval('1' * 5)
will be valid, butop.eval('11')
will not. Tipo de retorno
int
 Retorna
The number of qubits accepted by the Operator’s underlying function.

property
oplist
¶ The list of
OperatorBases
defining the underlying function of this Operator. Tipo de retorno
List
[OperatorBase
] Retorna
The Operators defining the ListOp

property
parameters
¶ Return a set of Parameter objects contained in the Operator.

permute
(permutation)¶ Permute the qubits of the operator.
 Parâmetros
permutation (
List
[int
]) – A list defining where each qubit should be permuted. The qubit at index j should be permuted to position permutation[j]. Tipo de retorno
OperatorBase
 Retorna
A new ListOp representing the permuted operator.
 Levanta
OpflowError – if indices do not define a new index for each qubit.

power
(exponent)¶ Return Operator composed with self multiple times, overloaded by
**
. Tipo de retorno
OperatorBase

primitive_strings
()¶ Return a set of strings describing the primitives contained in the Operator. For example,
{'QuantumCircuit', 'Pauli'}
. For hierarchical Operators, such asListOps
, this can help illuminate the primitives represented in the various recursive levels, and therefore which conversions can be applied. Tipo de retorno
Set
[str
] Retorna
A set of strings describing the primitives contained within the Operator.

reduce
()[código fonte]¶ Try collapsing the Operator structure, usually after some type of conversion, e.g. trying to add Operators in a SummedOp or delete needless IGates in a CircuitOp. If no reduction is available, just returns self.
 Tipo de retorno
OperatorBase
 Retorna
The reduced
OperatorBase
.

property
settings
¶ Return settings.
 Tipo de retorno
Dict

tensor
(other)[código fonte]¶ Return tensor product between self and other, overloaded by
^
. Note: You must be conscious of Qiskit’s bigendian bit printing convention. Meaning, X.tensor(Y) produces an X on qubit 0 and an Y on qubit 1, or X⨂Y, but would produce a QuantumCircuit which looks like[Y] [X]
Because Terra prints circuits and results with qubit 0 at the end of the string or circuit.
 Parâmetros
other (
OperatorBase
) – TheOperatorBase
to tensor product with self. Tipo de retorno
OperatorBase
 Retorna
An
OperatorBase
equivalent to the tensor product of self and other.

tensorpower
(other)¶ Return tensor product with self multiple times, overloaded by
^
. Parâmetros
other (
int
) – The int number of times to tensor product self with itself viatensorpower
. Tipo de retorno
Union
[OperatorBase
,int
] Retorna
An
OperatorBase
equivalent to the tensorpower of self by other.

to_circuit
()[código fonte]¶ Returns the quantum circuit, representing the tensored operator.
 Tipo de retorno
QuantumCircuit
 Retorna
The circuit representation of the tensored operator.
 Levanta
OpflowError – for operators where a single underlying circuit can not be produced.

to_circuit_op
()¶ Returns an equivalent Operator composed of only QuantumCircuitbased primitives, such as
CircuitOp
andCircuitStateFn
. Tipo de retorno
OperatorBase

to_matrix
(massive=False)¶ Return NumPy representation of the Operator. Represents the evaluation of the Operator’s underlying function on every combination of basis binary strings. Warn if more than 16 qubits to force having to set
massive=True
if such a large vector is desired. Tipo de retorno
ndarray
 Retorna
The NumPy
ndarray
equivalent to this Operator.

to_matrix_op
(massive=False)¶ Returns an equivalent Operator composed of only NumPybased primitives, such as
MatrixOp
andVectorStateFn
. Tipo de retorno
ListOp

to_pauli_op
(massive=False)¶ Returns an equivalent Operator composed of only Paulibased primitives, such as
PauliOp
. Tipo de retorno
ListOp

to_spmatrix
()¶ Returns SciPy sparse matrix representation of the Operator.
 Tipo de retorno
Union
[spmatrix
,List
[spmatrix
]] Retorna
CSR sparse matrix representation of the Operator, or List thereof.

traverse
(convert_fn, coeff=None)¶ Apply the convert_fn to each node in the oplist.
 Parâmetros
convert_fn (
Callable
) – The function to apply to the internal OperatorBase.coeff (
Union
[complex
,ParameterExpression
,None
]) – A coefficient to multiply by after applying convert_fn. If it is None, self.coeff is used instead.
 Tipo de retorno
ListOp
 Retorna
The converted ListOp.