CRS¶
- class CRS(max_evals=1000)[소스]¶
기반 클래스:
NLoptOptimizer
Controlled Random Search (CRS) with local mutation optimizer.
Controlled Random Search (CRS) with local mutation is part of the family of the CRS optimizers. The CRS optimizers start with a random population of points, and randomly evolve these points by heuristic rules. In the case of CRS with local mutation, the evolution is a randomized version of the
NELDER_MEAD
local optimizer.NLopt global optimizer, derivative-free. For further detail, please refer to https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#controlled-random-search-crs-with-local-mutation
- 매개변수
max_evals (
int
) – Maximum allowed number of function evaluations.- 예외 발생
MissingOptionalLibraryError – NLopt library not installed.
Methods
Return NLopt optimizer type
return support level dictionary
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Minimize the scalar function.
Print algorithm-specific options.
Set max evals grouped
Sets or updates values in the options dictionary.
Wrap the function to implicitly inject the args at the call of the function.
Attributes
- bounds_support_level¶
Returns bounds support level
- gradient_support_level¶
Returns gradient support level
- initial_point_support_level¶
Returns initial point support level
- is_bounds_ignored¶
Returns is bounds ignored
- is_bounds_required¶
Returns is bounds required
- is_bounds_supported¶
Returns is bounds supported
- is_gradient_ignored¶
Returns is gradient ignored
- is_gradient_required¶
Returns is gradient required
- is_gradient_supported¶
Returns is gradient supported
- is_initial_point_ignored¶
Returns is initial point ignored
- is_initial_point_required¶
Returns is initial point required
- is_initial_point_supported¶
Returns is initial point supported
- setting¶
Return setting
- settings¶