Permutation¶
- class Permutation(num_qubits, pattern=None, seed=None)[source]¶
Bases :
QuantumCircuit
An n_qubit circuit that permutes qubits.
Return an n_qubit permutation circuit implemented using SWAPs.
- Paramètres
num_qubits (
int
) – circuit width.pattern (
Optional
[List
[int
]]) – permutation pattern, describing which qubits occupy the positions 0, 1, 2, etc. after applying the permutation, that ispattern[k] = m
when the permutation maps qubitm
to positionk
. As an example, the pattern[2, 4, 3, 0, 1]
means that qubit2
goes to position0
, qubit4
goes to the position1
, etc. The pattern can also beNone
, in which case a random permutation overnum_qubits
is created.seed (
Optional
[int
]) – random seed in case a random permutation is requested.
- Lève
CircuitError – if permutation pattern is malformed.
- Reference Circuit:
(
Source code
,png
,hires.png
,pdf
)- Expanded Circuit:
(
Source code
,png
,hires.png
,pdf
)
Attributes
- ancillas¶
Returns a list of ancilla bits in the order that the registers were added.
- Type renvoyé
List
[AncillaQubit
]
- calibrations¶
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{'gate_name': {(qubits, params): schedule}}
- Type renvoyé
dict
- clbits¶
Returns a list of classical bits in the order that the registers were added.
- Type renvoyé
List
[Clbit
]
- data¶
Return the circuit data (instructions and context).
- Renvoie
a list-like object containing the
CircuitInstruction
s for each instruction.- Type renvoyé
QuantumCircuitData
- extension_lib = 'include "qelib1.inc";'¶
- global_phase¶
Return the global phase of the circuit in radians.
- Type renvoyé
Union
[ParameterExpression
,float
]
- header = 'OPENQASM 2.0;'¶
- instances = 2131¶
- metadata¶
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.- Type renvoyé
dict
- num_ancillas¶
Return the number of ancilla qubits.
- Type renvoyé
int
- num_clbits¶
Return number of classical bits.
- Type renvoyé
int
- num_parameters¶
The number of parameter objects in the circuit.
- Type renvoyé
int
- num_qubits¶
Return number of qubits.
- Type renvoyé
int
- op_start_times¶
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
- Type renvoyé
List
[int
]- Renvoie
List of integers representing instruction start times. The index corresponds to the index of instruction in
QuantumCircuit.data
.- Lève
AttributeError – When circuit is not scheduled.
- parameters¶
The parameters defined in the circuit.
This attribute returns the
Parameter
objects in the circuit sorted alphabetically. Note that parameters instantiated with aParameterVector
are still sorted numerically.Exemples
The snippet below shows that insertion order of parameters does not matter.
>>> from qiskit.circuit import QuantumCircuit, Parameter >>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant") >>> circuit = QuantumCircuit(1) >>> circuit.rx(b, 0) >>> circuit.rz(elephant, 0) >>> circuit.ry(a, 0) >>> circuit.parameters # sorted alphabetically! ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unituitive when it comes to numbers. The literal « 10 » comes before « 2 » in strict alphabetical sorting.
>>> from qiskit.circuit import QuantumCircuit, Parameter >>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")] >>> circuit = QuantumCircuit(1) >>> circuit.u(*angles, 0) >>> circuit.draw() ┌─────────────────────────────┐ q: ┤ U(angle_1,angle_2,angle_10) ├ └─────────────────────────────┘ >>> circuit.parameters ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a
ParameterVector
can be used.>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector >>> x = ParameterVector("x", 12) >>> circuit = QuantumCircuit(1) >>> for x_i in x: ... circuit.rx(x_i, 0) >>> circuit.parameters ParameterView([ ParameterVectorElement(x[0]), ParameterVectorElement(x[1]), ParameterVectorElement(x[2]), ParameterVectorElement(x[3]), ..., ParameterVectorElement(x[11]) ])
- Type renvoyé
ParameterView
- Renvoie
The sorted
Parameter
objects in the circuit.
- prefix = 'circuit'¶