PauliFeatureMap¶
- class PauliFeatureMap(feature_dimension=None, reps=2, entanglement='full', alpha=2.0, paulis=None, data_map_func=None, parameter_prefix='x', insert_barriers=False, name='PauliFeatureMap')[source]¶
Bases :
NLocal
The Pauli Expansion circuit.
The Pauli Expansion circuit is a data encoding circuit that transforms input data \(\vec{x} \in \mathbb{R}^n\) as
\[U_{\Phi(\vec{x})}=\exp\left(i\sum_{S\subseteq [n]} \phi_S(\vec{x})\prod_{i\in S} P_i\right)\]The circuit contains
reps
repetitions of this transformation. The variable \(P_i \in \{ I, X, Y, Z \}\) denotes the Pauli matrices. The index \(S\) describes connectivities between different qubits or datapoints: \(S \in \{\binom{n}{k}\ combinations,\ k = 1,... n \}\). Per default the data-mapping \(\phi_S\) is\[\begin{split}\phi_S(\vec{x}) = \begin{cases} x_0 \text{ if } k = 1 \\ \prod_{j \in S} (\pi - x_j) \text{ otherwise } \end{cases}\end{split}\]For example, if the Pauli strings are chosen to be \(P_0 = Z\) and \(P_{0,1} = YY\) on 2 qubits and with 1 repetition using the default data-mapping, the Pauli evolution feature map is represented by:
┌───┐┌──────────────┐┌──────────┐ ┌───────────┐ ┤ H ├┤ U1(2.0*x[0]) ├┤ RX(pi/2) ├──■───────────────────────────────────────■──┤ RX(-pi/2) ├ ├───┤├──────────────┤├──────────┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐├───────────┤ ┤ H ├┤ U1(2.0*x[1]) ├┤ RX(pi/2) ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├┤ RX(-pi/2) ├ └───┘└──────────────┘└──────────┘└───┘└─────────────────────────────────┘└───┘└───────────┘
Please refer to
ZFeatureMap
for the case \(k = 1\), \(P_0 = Z\) and toZZFeatureMap
for the case \(k = 2\), \(P_0 = Z\) and \(P_{0,1} = ZZ\).Exemples
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZZ']) >>> print(prep) ┌───┐ q_0: ┤ H ├──■───────────────────────────────────────■── ├───┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐ q_1: ┤ H ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├ └───┘└───┘└─────────────────────────────────┘└───┘
>>> prep = PauliFeatureMap(2, reps=1, paulis=['Z', 'XX']) >>> print(prep) ┌───┐┌──────────────┐┌───┐ ┌───┐ q_0: ┤ H ├┤ U1(2.0*x[0]) ├┤ H ├──■───────────────────────────────────────■──┤ H ├ ├───┤├──────────────┤├───┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐├───┤ q_1: ┤ H ├┤ U1(2.0*x[1]) ├┤ H ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├┤ H ├ └───┘└──────────────┘└───┘└───┘└─────────────────────────────────┘└───┘└───┘
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZY']) >>> print(prep) ┌───┐┌──────────┐ ┌───────────┐ q_0: ┤ H ├┤ RX(pi/2) ├──■───────────────────────────────────────■──┤ RX(-pi/2) ├ ├───┤└──────────┘┌─┴─┐┌─────────────────────────────────┐┌─┴─┐└───────────┘ q_1: ┤ H ├────────────┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├───────────── └───┘ └───┘└─────────────────────────────────┘└───┘
>>> from qiskit.circuit.library import EfficientSU2 >>> prep = PauliFeatureMap(3, reps=3, paulis=['Z', 'YY', 'ZXZ']) >>> wavefunction = EfficientSU2(3) >>> classifier = prep.compose(wavefunction >>> classifier.num_parameters 27 >>> classifier.count_ops() OrderedDict([('cx', 39), ('rx', 36), ('u1', 21), ('h', 15), ('ry', 12), ('rz', 12)])
Références
- [1]: Havlicek et al. (2018), Supervised learning with quantum enhanced feature spaces.
Create a new Pauli expansion circuit.
- Paramètres
feature_dimension (Optional[int]) – Number of qubits in the circuit.
reps (int) – The number of repeated circuits.
entanglement (Union[str, List[List[int]], Callable[[int], List[int]]]) – Specifies the entanglement structure. Refer to
NLocal
for detail.alpha (float) – The Pauli rotation factor, multiplicative to the pauli rotations
paulis (Optional[List[str]]) – A list of strings for to-be-used paulis. If None are provided,
['Z', 'ZZ']
will be used.data_map_func (Optional[Callable[[ndarray], float]]) – A mapping function for data x which can be supplied to override the default mapping from
self_product()
.parameter_prefix (str) – The prefix used if default parameters are generated.
insert_barriers (bool) – If True, barriers are inserted in between the evolution instructions and hadamard layers.
Methods Defined Here
Get the Pauli block for the feature map circuit.
Get the evolution block for the given pauli string.
Attributes
- alpha¶
The Pauli rotation factor (alpha).
- Renvoie
The Pauli rotation factor.
- ancillas¶
Returns a list of ancilla bits in the order that the registers were added.
- calibrations¶
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{'gate_name': {(qubits, params): schedule}}
- clbits¶
Returns a list of classical bits in the order that the registers were added.
- data¶
- entanglement¶
Get the entanglement strategy.
- Renvoie
The entanglement strategy, see
get_entangler_map()
for more detail on how the format is interpreted.
- entanglement_blocks¶
- extension_lib = 'include "qelib1.inc";'¶
- feature_dimension¶
Returns the feature dimension (which is equal to the number of qubits).
- Renvoie
The feature dimension of this feature map.
- global_phase¶
Return the global phase of the circuit in radians.
- header = 'OPENQASM 2.0;'¶
- initial_state¶
Return the initial state that is added in front of the n-local circuit.
- Renvoie
The initial state.
- insert_barriers¶
If barriers are inserted in between the layers or not.
- Renvoie
True
, if barriers are inserted in between the layers,False
if not.
- instances = 217¶
- layout¶
Return any associated layout information anout the circuit
This attribute contains an optional
TranspileLayout
object. This is typically set on the output fromtranspile()
orPassManager.run()
to retain information about the permutations caused on the input circuit by transpilation.There are two types of permutations caused by the
transpile()
function, an initial layout which permutes the qubits based on the selected physical qubits on theTarget
, and a final layout which is an output permutation caused bySwapGate
s inserted during routing.
- metadata¶
The user provided metadata associated with the circuit.
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
- num_ancillas¶
Return the number of ancilla qubits.
- num_clbits¶
Return number of classical bits.
- num_layers¶
Return the number of layers in the n-local circuit.
- Renvoie
The number of layers in the circuit.
- num_parameters¶
- num_parameters_settable¶
The number of distinct parameters.
- num_qubits¶
Returns the number of qubits in this circuit.
- Renvoie
The number of qubits.
- op_start_times¶
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
- Renvoie
List of integers representing instruction start times. The index corresponds to the index of instruction in
QuantumCircuit.data
.- Lève
AttributeError – When circuit is not scheduled.
- ordered_parameters¶
The parameters used in the underlying circuit.
This includes float values and duplicates.
Exemples
>>> # prepare circuit ... >>> print(nlocal) ┌───────┐┌──────────┐┌──────────┐┌──────────┐ q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├ └───────┘└──────────┘└──────────┘└──────────┘ >>> nlocal.parameters {Parameter(θ[1]), Parameter(θ[3])} >>> nlocal.ordered_parameters [1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
- Renvoie
The parameters objects used in the circuit.
- parameter_bounds¶
The parameter bounds for the unbound parameters in the circuit.
- Renvoie
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If
None
is returned, problem is fully unbounded.
- parameters¶
- paulis¶
The Pauli strings used in the entanglement of the qubits.
- Renvoie
The Pauli strings as list.
- preferred_init_points¶
The initial points for the parameters. Can be stored as initial guess in optimization.
- Renvoie
The initial values for the parameters, or None, if none have been set.
- prefix = 'circuit'¶
- qregs: list[QuantumRegister]¶
A list of the quantum registers associated with the circuit.
- qubits¶
Returns a list of quantum bits in the order that the registers were added.
- reps¶
The number of times rotation and entanglement block are repeated.
- Renvoie
The number of repetitions.
- rotation_blocks¶
The blocks in the rotation layers.
- Renvoie
The blocks in the rotation layers.