NumPyEigensolver¶
- class NumPyEigensolver(k=1, filter_criterion=None)[source]¶
Bases :
Eigensolver
The NumPy eigensolver algorithm.
The NumPy Eigensolver computes up to the first \(k\) eigenvalues of a complex-valued square matrix of dimension \(n \times n\), with \(k \leq n\).
Note
Operators are automatically converted to SciPy’s
spmatrix
as needed and this conversion can be costly in terms of memory and performance as the operator size, mostly in terms of number of qubits it represents, gets larger.- Paramètres
k (int) – Number of eigenvalues are to be computed, with a minimum value of 1.
filter_criterion (FilterType | None) – Callable that allows to filter eigenvalues/eigenstates. Only feasible eigenstates are returned in the results. The callable has the signature
filter(eigenstate, eigenvalue, aux_values)
and must return a boolean to indicate whether to keep this value in the final returned result or not. If the number of elements that satisfies the criterion is smaller thank
, then the returned list will have fewer elements and can even be empty.
Methods
Computes the minimum eigenvalue.
Whether computing the expectation value of auxiliary operators is supported.
Attributes
- filter_criterion¶
Return the filter criterion if set.
- k¶
Return k (number of eigenvalues requested).