LinearPauliRotations¶
- class LinearPauliRotations(num_state_qubits=None, slope=1, offset=0, basis='Y', name='LinRot')[Quellcode]¶
Bases:
FunctionalPauliRotations
Linearly-controlled X, Y or Z rotation.
For a register of state qubits \(|x\rangle\), a target qubit \(|0\rangle\) and the basis
'Y'
this circuit acts as:q_0: ─────────────────────────■───────── ... ────────────────────── │ . │ q_(n-1): ─────────────────────────┼───────── ... ───────────■────────── ┌────────────┐ ┌───────┴───────┐ ┌─────────┴─────────┐ q_n: ─┤ RY(offset) ├──┤ RY(2^0 slope) ├ ... ┤ RY(2^(n-1) slope) ├ └────────────┘ └───────────────┘ └───────────────────┘
This can for example be used to approximate linear functions, with \(a/2 =\)
slope
and \(b/2 =\)offset
and the basis'Y'
:\[|x\rangle |0\rangle \mapsto \cos(ax + b)|x\rangle|0\rangle + \sin(ax + b)|x\rangle |1\rangle\]Since for small arguments \(\sin(x) \approx x\) this operator can be used to approximate linear functions.
Create a new linear rotation circuit.
- Parameter
num_state_qubits (
Optional
[int
]) – The number of qubits representing the state \(|x\rangle\).slope (
float
) – The slope of the controlled rotation.offset (
float
) – The offset of the controlled rotation.basis (
str
) – The type of Pauli rotation (‚X‘, ‚Y‘, ‚Z‘).name (
str
) – The name of the circuit object.
Attributes
- ancillas¶
Returns a list of ancilla bits in the order that the registers were added.
- Rückgabetyp
List
[AncillaQubit
]
- basis¶
The kind of Pauli rotation to be used.
Set the basis to ‚X‘, ‚Y‘ or ‚Z‘ for controlled-X, -Y, or -Z rotations respectively.
- Rückgabetyp
str
- Rückgabe
The kind of Pauli rotation used in controlled rotation.
- calibrations¶
Return calibration dictionary.
- The custom pulse definition of a given gate is of the form
{‚gate_name‘: {(qubits, params): schedule}}
- Rückgabetyp
dict
- clbits¶
Returns a list of classical bits in the order that the registers were added.
- Rückgabetyp
List
[Clbit
]
- data¶
- extension_lib = 'include "qelib1.inc";'¶
- global_phase¶
Return the global phase of the circuit in radians.
- Rückgabetyp
Union
[ParameterExpression
,float
]
- header = 'OPENQASM 2.0;'¶
- instances = 87¶
- metadata¶
The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.- Rückgabetyp
dict
- num_ancilla_qubits¶
The minimum number of ancilla qubits in the circuit.
- Rückgabetyp
int
- Rückgabe
The minimal number of ancillas required.
- num_ancillas¶
Return the number of ancilla qubits.
- Rückgabetyp
int
- num_clbits¶
Return number of classical bits.
- Rückgabetyp
int
- num_parameters¶
- Rückgabetyp
int
- num_qubits¶
Return number of qubits.
- Rückgabetyp
int
- num_state_qubits¶
The number of state qubits representing the state \(|x\rangle\).
- Rückgabetyp
int
- Rückgabe
The number of state qubits.
- offset¶
The angle of the single qubit offset rotation on the target qubit.
Before applying the controlled rotations, a single rotation of angle
offset
is applied to the target qubit.- Rückgabetyp
float
- Rückgabe
The offset angle.
- op_start_times¶
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
- Rückgabetyp
List
[int
]- Rückgabe
List of integers representing instruction start times. The index corresponds to the index of instruction in
QuantumCircuit.data
.- Verursacht
AttributeError – When circuit is not scheduled.
- parameters¶
- Rückgabetyp
ParameterView
- prefix = 'circuit'¶
- qregs¶
A list of the quantum registers associated with the circuit.
- qubits¶
Returns a list of quantum bits in the order that the registers were added.
- Rückgabetyp
List
[Qubit
]
- slope¶
The multiplicative factor in the rotation angle of the controlled rotations.
The rotation angles are
slope * 2^0
,slope * 2^1
, … ,slope * 2^(n-1)
wheren
is the number of state qubits.- Rückgabetyp
float
- Rückgabe
The rotation angle common in all controlled rotations.