qiskit.aqua.algorithms.VQE¶

class
VQE
(operator=None, var_form=None, optimizer=None, initial_point=None, gradient=None, expectation=None, include_custom=False, max_evals_grouped=1, aux_operators=None, callback=None, quantum_instance=None)[Quellcode]¶ The Variational Quantum Eigensolver algorithm.
VQE is a hybrid algorithm that uses a variational technique and interleaves quantum and classical computations in order to find the minimum eigenvalue of the Hamiltonian \(H\) of a given system.
An instance of VQE requires defining two algorithmic subcomponents: a trial state (ansatz) from Aqua’s
variational_forms
, and one of the classicaloptimizers
. The ansatz is varied, via its set of parameters, by the optimizer, such that it works towards a state, as determined by the parameters applied to the variational form, that will result in the minimum expectation value being measured of the input operator (Hamiltonian).An optional array of parameter values, via the initial_point, may be provided as the starting point for the search of the minimum eigenvalue. This feature is particularly useful such as when there are reasons to believe that the solution point is close to a particular point. As an example, when building the dissociation profile of a molecule, it is likely that using the previous computed optimal solution as the starting initial point for the next interatomic distance is going to reduce the number of iterations necessary for the variational algorithm to converge. Aqua provides an initial point tutorial detailing this use case.
The length of the initial_point list value must match the number of the parameters expected by the variational form being used. If the initial_point is left at the default of
None
, then VQE will look to the variational form for a preferred value, based on its given initial state. If the variational form returnsNone
, then a random point will be generated within the parameter bounds set, as per above. If the variational form providesNone
as the lower bound, then VQE will default it to \(2\pi\); similarly, if the variational form returnsNone
as the upper bound, the default value will be \(2\pi\).Bemerkung
The VQE stores the parameters of
var_form
sorted by name to map the values provided by the optimizer to the circuit. This is done to ensure reproducible results, for example such that running the optimization twice with same random seeds yields the same result. Also, theoptimal_point
of the result object can be used as initial point of another VQE run by passing it asinitial_point
to the initializer. Parameter
operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – Qubit operator of the Observablevar_form (
Union
[QuantumCircuit
,VariationalForm
,None
]) – A parameterized circuit used as Ansatz for the wave function.optimizer (
Optional
[Optimizer
]) – A classical optimizer.initial_point (
Optional
[ndarray
]) – An optional initial point (i.e. initial parameter values) for the optimizer. IfNone
then VQE will look to the variational form for a preferred point and if not will simply compute a random one.gradient (
Union
[GradientBase
,Callable
,None
]) – An optional gradient function or operator for optimizer.expectation (
Optional
[ExpectationBase
]) – The Expectation converter for taking the average value of the Observable over the var_form state function. WhenNone
(the default) anExpectationFactory
is used to select an appropriate expectation based on the operator and backend. When using Aer qasm_simulator backend, with paulis, it is however much faster to leverage custom Aer function for the computation but, although VQE performs much faster with it, the outcome is ideal, with no shot noise, like using a state vector simulator. If you are just looking for the quickest performance when choosing Aer qasm_simulator and the lack of shot noise is not an issue then set include_custom parameter here toTrue
(defaults toFalse
).include_custom (
bool
) – When expectation parameter here is None setting this toTrue
will allow the factory to include the custom Aer pauli expectation.max_evals_grouped (
int
) – Max number of evaluations performed simultaneously. Signals the given optimizer that more than one set of parameters can be supplied so that potentially the expectation values can be computed in parallel. Typically this is possible when a finite difference gradient is used by the optimizer such that multiple points to compute the gradient can be passed and if computed in parallel improve overall execution time. Deprecated if a gradient operator or function is given.aux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – Optional list of auxiliary operators to be evaluated with the eigenstate of the minimum eigenvalue main result and their expectation values returned. For instance in chemistry these can be dipole operators, total particle count operators so we can get values for these at the ground state.callback (
Optional
[Callable
[[int
,ndarray
,float
,float
],None
]]) – a callback that can access the intermediate data during the optimization. Four parameter values are passed to the callback as follows during each evaluation by the optimizer for its current set of parameters as it works towards the minimum. These are: the evaluation count, the optimizer parameters for the variational form, the evaluated mean and the evaluated standard deviation.`quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – Quantum Instance or Backend

__init__
(operator=None, var_form=None, optimizer=None, initial_point=None, gradient=None, expectation=None, include_custom=False, max_evals_grouped=1, aux_operators=None, callback=None, quantum_instance=None)[Quellcode]¶  Parameter
operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – Qubit operator of the Observablevar_form (
Union
[QuantumCircuit
,VariationalForm
,None
]) – A parameterized circuit used as Ansatz for the wave function.optimizer (
Optional
[Optimizer
]) – A classical optimizer.initial_point (
Optional
[ndarray
]) – An optional initial point (i.e. initial parameter values) for the optimizer. IfNone
then VQE will look to the variational form for a preferred point and if not will simply compute a random one.gradient (
Union
[GradientBase
,Callable
,None
]) – An optional gradient function or operator for optimizer.expectation (
Optional
[ExpectationBase
]) – The Expectation converter for taking the average value of the Observable over the var_form state function. WhenNone
(the default) anExpectationFactory
is used to select an appropriate expectation based on the operator and backend. When using Aer qasm_simulator backend, with paulis, it is however much faster to leverage custom Aer function for the computation but, although VQE performs much faster with it, the outcome is ideal, with no shot noise, like using a state vector simulator. If you are just looking for the quickest performance when choosing Aer qasm_simulator and the lack of shot noise is not an issue then set include_custom parameter here toTrue
(defaults toFalse
).include_custom (
bool
) – When expectation parameter here is None setting this toTrue
will allow the factory to include the custom Aer pauli expectation.max_evals_grouped (
int
) – Max number of evaluations performed simultaneously. Signals the given optimizer that more than one set of parameters can be supplied so that potentially the expectation values can be computed in parallel. Typically this is possible when a finite difference gradient is used by the optimizer such that multiple points to compute the gradient can be passed and if computed in parallel improve overall execution time. Deprecated if a gradient operator or function is given.aux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – Optional list of auxiliary operators to be evaluated with the eigenstate of the minimum eigenvalue main result and their expectation values returned. For instance in chemistry these can be dipole operators, total particle count operators so we can get values for these at the ground state.callback (
Optional
[Callable
[[int
,ndarray
,float
,float
],None
]]) – a callback that can access the intermediate data during the optimization. Four parameter values are passed to the callback as follows during each evaluation by the optimizer for its current set of parameters as it works towards the minimum. These are: the evaluation count, the optimizer parameters for the variational form, the evaluated mean and the evaluated standard deviation.`quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – Quantum Instance or Backend
Methods
__init__
([operator, var_form, optimizer, …]) type operator
Union
[OperatorBase
,LegacyBaseOperator
,None
]
set parameterized circuits to None
compute_minimum_eigenvalue
([operator, …])Computes minimum eigenvalue.
construct_circuit
(parameter)Return the circuits used to compute the expectation value.
construct_expectation
(parameter)Generate the ansatz circuit and expectation value measurement, and return their runnable composition.
find_minimum
([initial_point, var_form, …])Optimize to find the minimum cost value.
Get the circuit with the optimal parameters.
Get the minimal cost or energy found by the VQE.
Get the simulation outcome of the optimal circuit.
get_prob_vector_for_params
(…[, …])Helper function to get probability vectors for a set of params
get_probabilities_for_counts
(counts)get probabilities for counts
Preparing the setting of VQE into a string.
run
([quantum_instance])Execute the algorithm with selected backend.
set_backend
(backend, **kwargs)Sets backend with configuration.
Whether computing the expectation value of auxiliary operators is supported.
Attributes
Returns aux operators
Returns backend.
The expectation value algorithm used to construct the expectation measurement from the observable.
Returns initial point
Returns operator
The optimal parameters for the variational form.
Returns optimizer
Returns quantum instance.
Return a numpy random.
Prepare the setting of VQE as a string.
Returns variational form

property
aux_operators
¶ Returns aux operators
 Rückgabetyp
Optional
[List
[Optional
[OperatorBase
]]]

property
backend
¶ Returns backend.
 Rückgabetyp
Union
[Backend
,BaseBackend
]

cleanup_parameterized_circuits
()¶ set parameterized circuits to None

compute_minimum_eigenvalue
(operator=None, aux_operators=None)[Quellcode]¶ Computes minimum eigenvalue. Operator and aux_operators can be supplied here and if not None will override any already set into algorithm so it can be reused with different operators. While an operator is required by algorithms, aux_operators are optional. To ‚remove‘ a previous aux_operators array use an empty list here.
 Parameter
operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – If not None replaces operator in algorithmaux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – If not None replaces aux_operators in algorithm
 Rückgabetyp
MinimumEigensolverResult
 Rückgabe
MinimumEigensolverResult

construct_circuit
(parameter)[Quellcode]¶ Return the circuits used to compute the expectation value.
 Parameter
parameter (
Union
[List
[float
],List
[Parameter
],ndarray
]) – Parameters for the ansatz circuit. Rückgabetyp
List
[QuantumCircuit
] Rückgabe
A list of the circuits used to compute the expectation value.

construct_expectation
(parameter)[Quellcode]¶ Generate the ansatz circuit and expectation value measurement, and return their runnable composition.
 Parameter
parameter (
Union
[List
[float
],List
[Parameter
],ndarray
]) – Parameters for the ansatz circuit. Rückgabetyp
OperatorBase
 Rückgabe
The Operator equalling the measurement of the ansatz
StateFn
by the Observable’s expectationStateFn
. Verursacht
AquaError – If no operator has been provided.

property
expectation
¶ The expectation value algorithm used to construct the expectation measurement from the observable.
 Rückgabetyp
ExpectationBase

find_minimum
(initial_point=None, var_form=None, cost_fn=None, optimizer=None, gradient_fn=None)¶ Optimize to find the minimum cost value.
 Parameter
initial_point (
Optional
[ndarray
]) – If not None will be used instead of any initial point supplied via constructor. If None and None was supplied to constructor then a random point will be used if the optimizer requires an initial point.var_form (
Union
[QuantumCircuit
,VariationalForm
,None
]) – If not None will be used instead of any variational form supplied via constructor.cost_fn (
Optional
[Callable
]) – If not None will be used instead of any cost_fn supplied via constructor.optimizer (
Optional
[Optimizer
]) – If not None will be used instead of any optimizer supplied via constructor.gradient_fn (
Optional
[Callable
]) – Optional gradient function for optimizer
 Rückgabe
Optimized variational parameters, and corresponding minimum cost value.
 Rückgabetyp
dict
 Verursacht
ValueError – invalid input

get_optimal_circuit
()[Quellcode]¶ Get the circuit with the optimal parameters.
 Rückgabetyp
QuantumCircuit

get_optimal_cost
()[Quellcode]¶ Get the minimal cost or energy found by the VQE.
 Rückgabetyp
float

get_optimal_vector
()[Quellcode]¶ Get the simulation outcome of the optimal circuit.
 Rückgabetyp
Union
[List
[float
],Dict
[str
,int
]]

get_prob_vector_for_params
(construct_circuit_fn, params_s, quantum_instance, construct_circuit_args=None)¶ Helper function to get probability vectors for a set of params

get_probabilities_for_counts
(counts)¶ get probabilities for counts

property
initial_point
¶ Returns initial point
 Rückgabetyp
Optional
[ndarray
]

property
operator
¶ Returns operator
 Rückgabetyp
Optional
[OperatorBase
]

property
optimal_params
¶ The optimal parameters for the variational form.
 Rückgabetyp
List
[float
]

property
optimizer
¶ Returns optimizer
 Rückgabetyp
Optional
[Optimizer
]

print_settings
()[Quellcode]¶ Preparing the setting of VQE into a string.
 Rückgabe
the formatted setting of VQE
 Rückgabetyp
str

property
quantum_instance
¶ Returns quantum instance.
 Rückgabetyp
Optional
[QuantumInstance
]

property
random
¶ Return a numpy random.

run
(quantum_instance=None, **kwargs)¶ Execute the algorithm with selected backend.
 Parameter
quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – the experimental setting.kwargs (dict) – kwargs
 Rückgabe
results of an algorithm.
 Rückgabetyp
dict
 Verursacht
AquaError – If a quantum instance or backend has not been provided

set_backend
(backend, **kwargs)¶ Sets backend with configuration.
 Rückgabetyp
None

property
setting
¶ Prepare the setting of VQE as a string.

classmethod
supports_aux_operators
()[Quellcode]¶ Whether computing the expectation value of auxiliary operators is supported.
If the minimum eigensolver computes an eigenstate of the main operator then it can compute the expectation value of the aux_operators for that state. Otherwise they will be ignored.
 Rückgabetyp
bool
 Rückgabe
True if aux_operator expectations can be evaluated, False otherwise

property
var_form
¶ Returns variational form
 Rückgabetyp
Union
[QuantumCircuit
,VariationalForm
,None
]