German
Languages
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

Quellcode für qiskit.circuit.library.standard_gates.u

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Two-pulse single-qubit gate."""
import math
from cmath import exp
from typing import Optional, Union
import numpy
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.parameterexpression import ParameterValueType
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.exceptions import CircuitError


[Doku]class UGate(Gate): r"""Generic single-qubit rotation gate with 3 Euler angles. Can be applied to a :class:`~qiskit.circuit.QuantumCircuit` with the :meth:`~qiskit.circuit.QuantumCircuit.u` method. **Circuit symbol:** .. parsed-literal:: ┌──────────┐ q_0: ┤ U(ϴ,φ,λ) ├ └──────────┘ **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} U(\theta, \phi, \lambda) = \begin{pmatrix} \cos\left(\th\right) & -e^{i\lambda}\sin\left(\th\right) \\ e^{i\phi}\sin\left(\th\right) & e^{i(\phi+\lambda)}\cos\left(\th\right) \end{pmatrix} .. note:: The matrix representation shown here is the same as in the `OpenQASM 3.0 specification <https://openqasm.com/language/gates.html#built-in-gates>`_, which differs from the `OpenQASM 2.0 specification <https://doi.org/10.48550/arXiv.1707.03429>`_ by a global phase of :math:`e^{i(\phi+\lambda)/2}`. **Examples:** .. math:: U\left(\theta, -\frac{\pi}{2}, \frac{\pi}{2}\right) = RX(\theta) .. math:: U(\theta, 0, 0) = RY(\theta) """ def __init__( self, theta: ParameterValueType, phi: ParameterValueType, lam: ParameterValueType, label: Optional[str] = None, ): """Create new U gate.""" super().__init__("u", 1, [theta, phi, lam], label=label)
[Doku] def inverse(self): r"""Return inverted U gate. :math:`U(\theta,\phi,\lambda)^{\dagger} =U(-\theta,-\lambda,-\phi)`) """ return UGate(-self.params[0], -self.params[2], -self.params[1])
[Doku] def control( self, num_ctrl_qubits: int = 1, label: Optional[str] = None, ctrl_state: Optional[Union[str, int]] = None, ): """Return a (multi-)controlled-U gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ if num_ctrl_qubits == 1: gate = CUGate( self.params[0], self.params[1], self.params[2], 0, label=label, ctrl_state=ctrl_state, ) gate.base_gate.label = self.label return gate return super().control(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
def __array__(self, dtype=complex): """Return a numpy.array for the U gate.""" theta, phi, lam = (float(param) for param in self.params) cos = math.cos(theta / 2) sin = math.sin(theta / 2) return numpy.array( [ [cos, -exp(1j * lam) * sin], [exp(1j * phi) * sin, exp(1j * (phi + lam)) * cos], ], dtype=dtype, )
[Doku]class CUGate(ControlledGate): r"""Controlled-U gate (4-parameter two-qubit gate). This is a controlled version of the U gate (generic single qubit rotation), including a possible global phase :math:`e^{i\gamma}` of the U gate. Can be applied to a :class:`~qiskit.circuit.QuantumCircuit` with the :meth:`~qiskit.circuit.QuantumCircuit.cu` method. **Circuit symbol:** .. parsed-literal:: q_0: ──────■────── ┌─────┴──────┐ q_1: ┤ U(ϴ,φ,λ,γ) ├ └────────────┘ **Matrix representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} CU(\theta, \phi, \lambda, \gamma)\ q_0, q_1 = I \otimes |0\rangle\langle 0| + e^{i\gamma} U(\theta,\phi,\lambda) \otimes |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{i\gamma}\cos(\th) & 0 & -e^{i(\gamma + \lambda)}\sin(\th) \\ 0 & 0 & 1 & 0 \\ 0 & e^{i(\gamma+\phi)}\sin(\th) & 0 & e^{i(\gamma+\phi+\lambda)}\cos(\th) \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_1. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌────────────┐ q_0: ┤ U(ϴ,φ,λ,γ) ├ └─────┬──────┘ q_1: ──────■─────── .. math:: CU(\theta, \phi, \lambda, \gamma)\ q_1, q_0 = |0\rangle\langle 0| \otimes I + e^{i\gamma}|1\rangle\langle 1| \otimes U(\theta,\phi,\lambda) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{i\gamma} \cos(\th) & -e^{i(\gamma + \lambda)}\sin(\th) \\ 0 & 0 & e^{i(\gamma + \phi)}\sin(\th) & e^{i(\gamma + \phi+\lambda)}\cos(\th) \end{pmatrix} """ def __init__( self, theta: ParameterValueType, phi: ParameterValueType, lam: ParameterValueType, gamma: ParameterValueType, label: Optional[str] = None, ctrl_state: Optional[Union[str, int]] = None, ): """Create new CU gate.""" super().__init__( "cu", 2, [theta, phi, lam, gamma], num_ctrl_qubits=1, label=label, ctrl_state=ctrl_state, base_gate=UGate(theta, phi, lam), ) def _define(self): """ gate cu(theta,phi,lambda,gamma) c, t { phase(gamma) c; phase((lambda+phi)/2) c; phase((lambda-phi)/2) t; cx c,t; u(-theta/2,0,-(phi+lambda)/2) t; cx c,t; u(theta/2,phi,0) t; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit # ┌──────┐ ┌──────────────┐ # q_0: ────┤ P(γ) ├────┤ P(λ/2 + φ/2) ├──■────────────────────────────■──────────────── # ┌───┴──────┴───┐└──────────────┘┌─┴─┐┌──────────────────────┐┌─┴─┐┌────────────┐ # q_1: ┤ P(λ/2 - φ/2) ├────────────────┤ X ├┤ U(-0/2,0,-λ/2 - φ/2) ├┤ X ├┤ U(0/2,φ,0) ├ # └──────────────┘ └───┘└──────────────────────┘└───┘└────────────┘ q = QuantumRegister(2, "q") qc = QuantumCircuit(q, name=self.name) qc.p(self.params[3], 0) qc.p((self.params[2] + self.params[1]) / 2, 0) qc.p((self.params[2] - self.params[1]) / 2, 1) qc.cx(0, 1) qc.u(-self.params[0] / 2, 0, -(self.params[1] + self.params[2]) / 2, 1) qc.cx(0, 1) qc.u(self.params[0] / 2, self.params[1], 0, 1) self.definition = qc
[Doku] def inverse(self): r"""Return inverted CU gate. :math:`CU(\theta,\phi,\lambda,\gamma)^{\dagger} = CU(-\theta,-\phi,-\lambda,-\gamma)`) """ return CUGate( -self.params[0], -self.params[2], -self.params[1], -self.params[3], ctrl_state=self.ctrl_state, )
def __array__(self, dtype=None): """Return a numpy.array for the CU gate.""" theta, phi, lam, gamma = (float(param) for param in self.params) cos = numpy.cos(theta / 2) sin = numpy.sin(theta / 2) a = numpy.exp(1j * gamma) * cos b = -numpy.exp(1j * (gamma + lam)) * sin c = numpy.exp(1j * (gamma + phi)) * sin d = numpy.exp(1j * (gamma + phi + lam)) * cos if self.ctrl_state: return numpy.array( [[1, 0, 0, 0], [0, a, 0, b], [0, 0, 1, 0], [0, c, 0, d]], dtype=dtype ) else: return numpy.array( [[a, 0, b, 0], [0, 1, 0, 0], [c, 0, d, 0], [0, 0, 0, 1]], dtype=dtype ) @property def params(self): """Get parameters from base_gate. Returns: list: List of gate parameters. Raises: CircuitError: Controlled gate does not define a base gate """ if self.base_gate: # CU has one additional parameter to the U base gate return self.base_gate.params + self._params else: raise CircuitError("Controlled gate does not define base gate for extracting params") @params.setter def params(self, parameters): """Set base gate parameters. Args: parameters (list): The list of parameters to set. Raises: CircuitError: If controlled gate does not define a base gate. """ # CU has one additional parameter to the U base gate self._params = [parameters[-1]] if self.base_gate: self.base_gate.params = parameters[:-1] else: raise CircuitError("Controlled gate does not define base gate for extracting params")