Bengali
Languages
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

RXXGate

class RXXGate(theta, label=None)[source]

Bases: Gate

A parametric 2-qubit \(X \otimes X\) interaction (rotation about XX).

This gate is symmetric, and is maximally entangling at \(\theta = \pi/2\).

Can be applied to a QuantumCircuit with the rxx() method.

Circuit Symbol:

     ┌─────────┐
q_0: ┤1        ├
     │  Rxx(ϴ) │
q_1: ┤0        ├
     └─────────┘

Matrix Representation:

\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{XX}(\theta) = \exp\left(-i \th X{\otimes}X\right) = \begin{pmatrix} \cos\left(\th\right) & 0 & 0 & -i\sin\left(\th\right) \\ 0 & \cos\left(\th\right) & -i\sin\left(\th\right) & 0 \\ 0 & -i\sin\left(\th\right) & \cos\left(\th\right) & 0 \\ -i\sin\left(\th\right) & 0 & 0 & \cos\left(\th\right) \end{pmatrix}\end{split}\end{aligned}\end{align} \]

Examples:

\[R_{XX}(\theta = 0) = I\]
\[R_{XX}(\theta = \pi) = i X \otimes X\]
\[\begin{split}R_{XX}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & -i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ -i & 0 & 0 & 1 \end{pmatrix}\end{split}\]

Create new RXX gate.

Methods Defined Here

inverse

Return inverse RXX gate (i.e.

power

Raise gate to a power.

Attributes

condition_bits

Get Clbits in condition.

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

name

Return the name.

num_clbits

Return the number of clbits.

num_qubits

Return the number of qubits.

params

return instruction params.

unit

Get the time unit of duration.