Bengali
Languages
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

Source code for qiskit.quantum_info.states.statevector

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Statevector quantum state class.
"""

import copy
import re
from numbers import Number
from typing import Dict

import numpy as np

from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.states.quantum_state import QuantumState
from qiskit.quantum_info.operators.mixins.tolerances import TolerancesMixin
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.symplectic import Pauli, SparsePauliOp
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.predicates import matrix_equal

# pylint: disable=import-error
from qiskit._accelerate.pauli_expval import (
    expval_pauli_no_x,
    expval_pauli_with_x,
)


[docs]class Statevector(QuantumState, TolerancesMixin): """Statevector class""" def __init__(self, data, dims=None): """Initialize a statevector object. Args: data (np.array or list or Statevector or Operator or QuantumCircuit or qiskit.circuit.Instruction): Data from which the statevector can be constructed. This can be either a complex vector, another statevector, a ``Operator`` with only one column or a ``QuantumCircuit`` or ``Instruction``. If the data is a circuit or instruction, the statevector is constructed by assuming that all qubits are initialized to the zero state. dims (int or tuple or list): Optional. The subsystem dimension of the state (See additional information). Raises: QiskitError: if input data is not valid. Additional Information: The ``dims`` kwarg can be None, an integer, or an iterable of integers. * ``Iterable`` -- the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list. * ``Int`` or ``None`` -- the length of the input vector specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem. """ if isinstance(data, (list, np.ndarray)): # Finally we check if the input is a raw vector in either a # python list or numpy array format. self._data = np.asarray(data, dtype=complex) elif isinstance(data, Statevector): self._data = data._data if dims is None: dims = data._op_shape._dims_l elif isinstance(data, Operator): # We allow conversion of column-vector operators to Statevectors input_dim, _ = data.dim if input_dim != 1: raise QiskitError("Input Operator is not a column-vector.") self._data = np.ravel(data.data) elif isinstance(data, (QuantumCircuit, Instruction)): self._data = Statevector.from_instruction(data).data else: raise QiskitError("Invalid input data format for Statevector") # Check that the input is a numpy vector or column-vector numpy # matrix. If it is a column-vector matrix reshape to a vector. ndim = self._data.ndim shape = self._data.shape if ndim != 1: if ndim == 2 and shape[1] == 1: self._data = np.reshape(self._data, shape[0]) shape = self._data.shape elif ndim != 2 or shape[1] != 1: raise QiskitError("Invalid input: not a vector or column-vector.") super().__init__(op_shape=OpShape.auto(shape=shape, dims_l=dims, num_qubits_r=0)) def __array__(self, dtype=None): if dtype: return np.asarray(self.data, dtype=dtype) return self.data def __eq__(self, other): return super().__eq__(other) and np.allclose( self._data, other._data, rtol=self.rtol, atol=self.atol ) def __repr__(self): prefix = "Statevector(" pad = len(prefix) * " " return "{}{},\n{}dims={})".format( prefix, np.array2string(self._data, separator=", ", prefix=prefix), pad, self._op_shape.dims_l(), ) @property def settings(self) -> Dict: """Return settings.""" return {"data": self._data, "dims": self._op_shape.dims_l()}
[docs] def draw(self, output=None, **drawer_args): """Return a visualization of the Statevector. **repr**: ASCII TextMatrix of the state's ``__repr__``. **text**: ASCII TextMatrix that can be printed in the console. **latex**: An IPython Latex object for displaying in Jupyter Notebooks. **latex_source**: Raw, uncompiled ASCII source to generate array using LaTeX. **qsphere**: Matplotlib figure, rendering of statevector using `plot_state_qsphere()`. **hinton**: Matplotlib figure, rendering of statevector using `plot_state_hinton()`. **bloch**: Matplotlib figure, rendering of statevector using `plot_bloch_multivector()`. **city**: Matplotlib figure, rendering of statevector using `plot_state_city()`. **paulivec**: Matplotlib figure, rendering of statevector using `plot_state_paulivec()`. Args: output (str): Select the output method to use for drawing the state. Valid choices are `repr`, `text`, `latex`, `latex_source`, `qsphere`, `hinton`, `bloch`, `city`, or `paulivec`. Default is `repr`. Default can be changed by adding the line ``state_drawer = <default>`` to ``~/.qiskit/settings.conf`` under ``[default]``. drawer_args: Arguments to be passed directly to the relevant drawing function or constructor (`TextMatrix()`, `array_to_latex()`, `plot_state_qsphere()`, `plot_state_hinton()` or `plot_bloch_multivector()`). See the relevant function under `qiskit.visualization` for that function's documentation. Returns: :class:`matplotlib.Figure` or :class:`str` or :class:`TextMatrix` or :class:`IPython.display.Latex`: Drawing of the Statevector. Raises: ValueError: when an invalid output method is selected. Examples: Plot one of the Bell states .. jupyter-execute:: from numpy import sqrt from qiskit.quantum_info import Statevector sv=Statevector([1/sqrt(2), 0, 0, -1/sqrt(2)]) sv.draw(output='latex') """ # pylint: disable=cyclic-import from qiskit.visualization.state_visualization import state_drawer return state_drawer(self, output=output, **drawer_args)
def _ipython_display_(self): out = self.draw() if isinstance(out, str): print(out) else: from IPython.display import display display(out) def __getitem__(self, key): """Return Statevector item either by index or binary label Args: key (int or str): index or corresponding binary label, e.g. '01' = 1. Returns: numpy.complex128: Statevector item. Raises: QiskitError: if key is not valid. """ if isinstance(key, str): try: key = int(key, 2) except ValueError: raise QiskitError(f"Key '{key}' is not a valid binary string.") from None if isinstance(key, int): if key >= self.dim: raise QiskitError(f"Key {key} is greater than Statevector dimension {self.dim}.") if key < 0: raise QiskitError(f"Key {key} is not a valid positive value.") return self._data[key] else: raise QiskitError("Key must be int or a valid binary string.") def __iter__(self): yield from self._data def __len__(self): return len(self._data) @property def data(self): """Return data.""" return self._data
[docs] def is_valid(self, atol=None, rtol=None): """Return True if a Statevector has norm 1.""" if atol is None: atol = self.atol if rtol is None: rtol = self.rtol norm = np.linalg.norm(self.data) return np.allclose(norm, 1, rtol=rtol, atol=atol)
[docs] def to_operator(self): """Convert state to a rank-1 projector operator""" mat = np.outer(self.data, np.conj(self.data)) return Operator(mat, input_dims=self.dims(), output_dims=self.dims())
[docs] def conjugate(self): """Return the conjugate of the operator.""" return Statevector(np.conj(self.data), dims=self.dims())
[docs] def trace(self): """Return the trace of the quantum state as a density matrix.""" return np.sum(np.abs(self.data) ** 2)
[docs] def purity(self): """Return the purity of the quantum state.""" # For a valid statevector the purity is always 1, however if we simply # have an arbitrary vector (not correctly normalized) then the # purity is equivalent to the trace squared: # P(|psi>) = Tr[|psi><psi|psi><psi|] = |<psi|psi>|^2 return self.trace() ** 2
[docs] def tensor(self, other): """Return the tensor product state self ⊗ other. Args: other (Statevector): a quantum state object. Returns: Statevector: the tensor product operator self ⊗ other. Raises: QiskitError: if other is not a quantum state. """ if not isinstance(other, Statevector): other = Statevector(other) ret = copy.copy(self) ret._op_shape = self._op_shape.tensor(other._op_shape) ret._data = np.kron(self._data, other._data) return ret
[docs] def inner(self, other): r"""Return the inner product of self and other as :math:`\langle self| other \rangle`. Args: other (Statevector): a quantum state object. Returns: np.complex128: the inner product of self and other, :math:`\langle self| other \rangle`. Raises: QiskitError: if other is not a quantum state or has different dimension. """ if not isinstance(other, Statevector): other = Statevector(other) if self.dims() != other.dims(): raise QiskitError( f"Statevector dimensions do not match: {self.dims()} and {other.dims()}." ) inner = np.vdot(self.data, other.data) return inner
[docs] def expand(self, other): """Return the tensor product state other ⊗ self. Args: other (Statevector): a quantum state object. Returns: Statevector: the tensor product state other ⊗ self. Raises: QiskitError: if other is not a quantum state. """ if not isinstance(other, Statevector): other = Statevector(other) ret = copy.copy(self) ret._op_shape = self._op_shape.expand(other._op_shape) ret._data = np.kron(other._data, self._data) return ret
def _add(self, other): """Return the linear combination self + other. Args: other (Statevector): a quantum state object. Returns: Statevector: the linear combination self + other. Raises: QiskitError: if other is not a quantum state, or has incompatible dimensions. """ if not isinstance(other, Statevector): other = Statevector(other) self._op_shape._validate_add(other._op_shape) ret = copy.copy(self) ret._data = self.data + other.data return ret def _multiply(self, other): """Return the scalar multiplied state self * other. Args: other (complex): a complex number. Returns: Statevector: the scalar multiplied state other * self. Raises: QiskitError: if other is not a valid complex number. """ if not isinstance(other, Number): raise QiskitError("other is not a number") ret = copy.copy(self) ret._data = other * self.data return ret
[docs] def evolve(self, other, qargs=None): """Evolve a quantum state by the operator. Args: other (Operator): The operator to evolve by. qargs (list): a list of Statevector subsystem positions to apply the operator on. Returns: Statevector: the output quantum state. Raises: QiskitError: if the operator dimension does not match the specified Statevector subsystem dimensions. """ if qargs is None: qargs = getattr(other, "qargs", None) # Get return vector ret = copy.copy(self) # Evolution by a circuit or instruction if isinstance(other, QuantumCircuit): other = other.to_instruction() if isinstance(other, Instruction): if self.num_qubits is None: raise QiskitError("Cannot apply QuantumCircuit to non-qubit Statevector.") return self._evolve_instruction(ret, other, qargs=qargs) # Evolution by an Operator if not isinstance(other, Operator): dims = self.dims(qargs=qargs) other = Operator(other, input_dims=dims, output_dims=dims) # check dimension if self.dims(qargs) != other.input_dims(): raise QiskitError( "Operator input dimensions are not equal to statevector subsystem dimensions." ) return Statevector._evolve_operator(ret, other, qargs=qargs)
[docs] def equiv(self, other, rtol=None, atol=None): """Return True if other is equivalent as a statevector up to global phase. .. note:: If other is not a Statevector, but can be used to initialize a statevector object, this will check that Statevector(other) is equivalent to the current statevector up to global phase. Args: other (Statevector): an object from which a ``Statevector`` can be constructed. rtol (float): relative tolerance value for comparison. atol (float): absolute tolerance value for comparison. Returns: bool: True if statevectors are equivalent up to global phase. """ if not isinstance(other, Statevector): try: other = Statevector(other) except QiskitError: return False if self.dim != other.dim: return False if atol is None: atol = self.atol if rtol is None: rtol = self.rtol return matrix_equal(self.data, other.data, ignore_phase=True, rtol=rtol, atol=atol)
[docs] def reverse_qargs(self): r"""Return a Statevector with reversed subsystem ordering. For a tensor product state this is equivalent to reversing the order of tensor product subsystems. For a statevector :math:`|\psi \rangle = |\psi_{n-1} \rangle \otimes ... \otimes |\psi_0 \rangle` the returned statevector will be :math:`|\psi_{0} \rangle \otimes ... \otimes |\psi_{n-1} \rangle`. Returns: Statevector: the Statevector with reversed subsystem order. """ ret = copy.copy(self) axes = tuple(range(self._op_shape._num_qargs_l - 1, -1, -1)) ret._data = np.reshape( np.transpose(np.reshape(self.data, self._op_shape.tensor_shape), axes), self._op_shape.shape, ) ret._op_shape = self._op_shape.reverse() return ret
def _expectation_value_pauli(self, pauli, qargs=None): """Compute the expectation value of a Pauli. Args: pauli (Pauli): a Pauli operator to evaluate expval of. qargs (None or list): subsystems to apply operator on. Returns: complex: the expectation value. """ n_pauli = len(pauli) if qargs is None: qubits = np.arange(n_pauli) else: qubits = np.array(qargs) x_mask = np.dot(1 << qubits, pauli.x) z_mask = np.dot(1 << qubits, pauli.z) pauli_phase = (-1j) ** pauli.phase if pauli.phase else 1 if x_mask + z_mask == 0: return pauli_phase * np.linalg.norm(self.data) if x_mask == 0: return pauli_phase * expval_pauli_no_x(self.data, self.num_qubits, z_mask) x_max = qubits[pauli.x][-1] y_phase = (-1j) ** pauli._count_y() return pauli_phase * expval_pauli_with_x( self.data, self.num_qubits, z_mask, x_mask, y_phase, x_max )
[docs] def expectation_value(self, oper, qargs=None): """Compute the expectation value of an operator. Args: oper (Operator): an operator to evaluate expval of. qargs (None or list): subsystems to apply operator on. Returns: complex: the expectation value. """ if isinstance(oper, Pauli): return self._expectation_value_pauli(oper, qargs) if isinstance(oper, SparsePauliOp): return sum( coeff * self._expectation_value_pauli(Pauli((z, x)), qargs) for z, x, coeff in zip(oper.paulis.z, oper.paulis.x, oper.coeffs) ) val = self.evolve(oper, qargs=qargs) conj = self.conjugate() return np.dot(conj.data, val.data)
[docs] def probabilities(self, qargs=None, decimals=None): """Return the subsystem measurement probability vector. Measurement probabilities are with respect to measurement in the computation (diagonal) basis. Args: qargs (None or list): subsystems to return probabilities for, if None return for all subsystems (Default: None). decimals (None or int): the number of decimal places to round values. If None no rounding is done (Default: None). Returns: np.array: The Numpy vector array of probabilities. Examples: Consider a 2-qubit product state :math:`|\\psi\\rangle=|+\\rangle\\otimes|0\\rangle`. .. jupyter-execute:: from qiskit.quantum_info import Statevector psi = Statevector.from_label('+0') # Probabilities for measuring both qubits probs = psi.probabilities() print('probs: {}'.format(probs)) # Probabilities for measuring only qubit-0 probs_qubit_0 = psi.probabilities([0]) print('Qubit-0 probs: {}'.format(probs_qubit_0)) # Probabilities for measuring only qubit-1 probs_qubit_1 = psi.probabilities([1]) print('Qubit-1 probs: {}'.format(probs_qubit_1)) We can also permute the order of qubits in the ``qargs`` list to change the qubit position in the probabilities output .. jupyter-execute:: from qiskit.quantum_info import Statevector psi = Statevector.from_label('+0') # Probabilities for measuring both qubits probs = psi.probabilities([0, 1]) print('probs: {}'.format(probs)) # Probabilities for measuring both qubits # but swapping qubits 0 and 1 in output probs_swapped = psi.probabilities([1, 0]) print('Swapped probs: {}'.format(probs_swapped)) """ probs = self._subsystem_probabilities( np.abs(self.data) ** 2, self._op_shape.dims_l(), qargs=qargs ) if decimals is not None: probs = probs.round(decimals=decimals) return probs
[docs] def reset(self, qargs=None): """Reset state or subsystems to the 0-state. Args: qargs (list or None): subsystems to reset, if None all subsystems will be reset to their 0-state (Default: None). Returns: Statevector: the reset state. Additional Information: If all subsystems are reset this will return the ground state on all subsystems. If only a some subsystems are reset this function will perform a measurement on those subsystems and evolve the subsystems so that the collapsed post-measurement states are rotated to the 0-state. The RNG seed for this sampling can be set using the :meth:`seed` method. """ if qargs is None: # Resetting all qubits does not require sampling or RNG ret = copy.copy(self) state = np.zeros(self._op_shape.shape, dtype=complex) state[0] = 1 ret._data = state return ret # Sample a single measurement outcome dims = self.dims(qargs) probs = self.probabilities(qargs) sample = self._rng.choice(len(probs), p=probs, size=1) # Convert to projector for state update proj = np.zeros(len(probs), dtype=complex) proj[sample] = 1 / np.sqrt(probs[sample]) # Rotate outcome to 0 reset = np.eye(len(probs)) reset[0, 0] = 0 reset[sample, sample] = 0 reset[0, sample] = 1 # compose with reset projection reset = np.dot(reset, np.diag(proj)) return self.evolve(Operator(reset, input_dims=dims, output_dims=dims), qargs=qargs)
[docs] @classmethod def from_label(cls, label): """Return a tensor product of Pauli X,Y,Z eigenstates. .. list-table:: Single-qubit state labels :header-rows: 1 * - Label - Statevector * - ``"0"`` - :math:`[1, 0]` * - ``"1"`` - :math:`[0, 1]` * - ``"+"`` - :math:`[1 / \\sqrt{2}, 1 / \\sqrt{2}]` * - ``"-"`` - :math:`[1 / \\sqrt{2}, -1 / \\sqrt{2}]` * - ``"r"`` - :math:`[1 / \\sqrt{2}, i / \\sqrt{2}]` * - ``"l"`` - :math:`[1 / \\sqrt{2}, -i / \\sqrt{2}]` Args: label (string): a eigenstate string ket label (see table for allowed values). Returns: Statevector: The N-qubit basis state density matrix. Raises: QiskitError: if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits. """ # Check label is valid if re.match(r"^[01rl\-+]+$", label) is None: raise QiskitError("Label contains invalid characters.") # We can prepare Z-eigenstates by converting the computational # basis bit-string to an integer and preparing that unit vector # However, for X-basis states, we will prepare a Z-eigenstate first # then apply Hadamard gates to rotate 0 and 1s to + and -. z_label = label xy_states = False if re.match("^[01]+$", label) is None: # We have X or Y eigenstates so replace +,r with 0 and # -,l with 1 and prepare the corresponding Z state xy_states = True z_label = z_label.replace("+", "0") z_label = z_label.replace("r", "0") z_label = z_label.replace("-", "1") z_label = z_label.replace("l", "1") # Initialize Z eigenstate vector num_qubits = len(label) data = np.zeros(1 << num_qubits, dtype=complex) pos = int(z_label, 2) data[pos] = 1 state = Statevector(data) if xy_states: # Apply hadamards to all qubits in X eigenstates x_mat = np.array([[1, 1], [1, -1]], dtype=complex) / np.sqrt(2) # Apply S.H to qubits in Y eigenstates y_mat = np.dot(np.diag([1, 1j]), x_mat) for qubit, char in enumerate(reversed(label)): if char in ["+", "-"]: state = state.evolve(x_mat, qargs=[qubit]) elif char in ["r", "l"]: state = state.evolve(y_mat, qargs=[qubit]) return state
[docs] @staticmethod def from_int(i, dims): """Return a computational basis statevector. Args: i (int): the basis state element. dims (int or tuple or list): The subsystem dimensions of the statevector (See additional information). Returns: Statevector: The computational basis state :math:`|i\\rangle`. Additional Information: The ``dims`` kwarg can be an integer or an iterable of integers. * ``Iterable`` -- the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list. * ``Int`` -- the integer specifies the total dimension of the state. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem. """ size = np.product(dims) state = np.zeros(size, dtype=complex) state[i] = 1.0 return Statevector(state, dims=dims)
[docs] @classmethod def from_instruction(cls, instruction): """Return the output statevector of an instruction. The statevector is initialized in the state :math:`|{0,\\ldots,0}\\rangle` of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned. Args: instruction (qiskit.circuit.Instruction or QuantumCircuit): instruction or circuit Returns: Statevector: The final statevector. Raises: QiskitError: if the instruction contains invalid instructions for the statevector simulation. """ # Convert circuit to an instruction if isinstance(instruction, QuantumCircuit): instruction = instruction.to_instruction() # Initialize an the statevector in the all |0> state init = np.zeros(2**instruction.num_qubits, dtype=complex) init[0] = 1.0 vec = Statevector(init, dims=instruction.num_qubits * (2,)) return Statevector._evolve_instruction(vec, instruction)
[docs] def to_dict(self, decimals=None): r"""Convert the statevector to dictionary form. This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished. Args: decimals (None or int): the number of decimal places to round values. If None no rounding is done (Default: None). Returns: dict: the dictionary form of the Statevector. Example: The ket-form of a 2-qubit statevector :math:`|\psi\rangle = |-\rangle\otimes |0\rangle` .. jupyter-execute:: from qiskit.quantum_info import Statevector psi = Statevector.from_label('-0') print(psi.to_dict()) For non-qubit subsystems the integer range can go from 0 to 9. For example in a qutrit system .. jupyter-execute:: import numpy as np from qiskit.quantum_info import Statevector vec = np.zeros(9) vec[0] = 1 / np.sqrt(2) vec[-1] = 1 / np.sqrt(2) psi = Statevector(vec, dims=(3, 3)) print(psi.to_dict()) For large subsystem dimensions delimiters are required. The following example is for a 20-dimensional system consisting of a qubit and 10-dimensional qudit. .. jupyter-execute:: import numpy as np from qiskit.quantum_info import Statevector vec = np.zeros(2 * 10) vec[0] = 1 / np.sqrt(2) vec[-1] = 1 / np.sqrt(2) psi = Statevector(vec, dims=(2, 10)) print(psi.to_dict()) """ return self._vector_to_dict( self.data, self._op_shape.dims_l(), decimals=decimals, string_labels=True )
@staticmethod def _evolve_operator(statevec, oper, qargs=None): """Evolve a qudit statevector""" new_shape = statevec._op_shape.compose(oper._op_shape, qargs=qargs) if qargs is None: # Full system evolution statevec._data = np.dot(oper._data, statevec._data) statevec._op_shape = new_shape return statevec # Get transpose axes num_qargs = statevec._op_shape.num_qargs[0] indices = [num_qargs - 1 - i for i in reversed(qargs)] axes = indices + [i for i in range(num_qargs) if i not in indices] axes_inv = np.argsort(axes).tolist() # Calculate contraction dimensions contract_dim = oper._op_shape.shape[1] contract_shape = (contract_dim, statevec._op_shape.shape[0] // contract_dim) # Reshape and transpose input array for contraction tensor = np.transpose( np.reshape(statevec.data, statevec._op_shape.tensor_shape), axes, ) tensor_shape = tensor.shape # Perform contraction tensor = np.reshape( np.dot(oper.data, np.reshape(tensor, contract_shape)), tensor_shape, ) # Transpose back to original subsystem spec and flatten statevec._data = np.reshape(np.transpose(tensor, axes_inv), new_shape.shape[0]) # Update dimension statevec._op_shape = new_shape return statevec @staticmethod def _evolve_instruction(statevec, obj, qargs=None): """Update the current Statevector by applying an instruction.""" from qiskit.circuit.reset import Reset from qiskit.circuit.barrier import Barrier mat = Operator._instruction_to_matrix(obj) if mat is not None: # Perform the composition and inplace update the current state # of the operator return Statevector._evolve_operator(statevec, Operator(mat), qargs=qargs) # Special instruction types if isinstance(obj, Reset): statevec._data = statevec.reset(qargs)._data return statevec if isinstance(obj, Barrier): return statevec # If the instruction doesn't have a matrix defined we use its # circuit decomposition definition if it exists, otherwise we # cannot compose this gate and raise an error. if obj.definition is None: raise QiskitError(f"Cannot apply Instruction: {obj.name}") if not isinstance(obj.definition, QuantumCircuit): raise QiskitError( "{} instruction definition is {}; expected QuantumCircuit".format( obj.name, type(obj.definition) ) ) if obj.definition.global_phase: statevec._data *= np.exp(1j * float(obj.definition.global_phase)) qubits = {qubit: i for i, qubit in enumerate(obj.definition.qubits)} for instruction in obj.definition: if instruction.clbits: raise QiskitError( f"Cannot apply instruction with classical bits: {instruction.operation.name}" ) # Get the integer position of the flat register if qargs is None: new_qargs = [qubits[tup] for tup in instruction.qubits] else: new_qargs = [qargs[qubits[tup]] for tup in instruction.qubits] Statevector._evolve_instruction(statevec, instruction.operation, qargs=new_qargs) return statevec