Bengali
Languages
English
Bengali
French
German
Japanese
Korean
Portuguese
Spanish
Tamil

Source code for qiskit.pulse.library.waveform

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""A pulse that is described by complex-valued sample points."""
from typing import Dict, List, Optional, Union, Any

import numpy as np

from qiskit.pulse.exceptions import PulseError
from qiskit.pulse.library.pulse import Pulse


[docs]class Waveform(Pulse): """A pulse specified completely by complex-valued samples; each sample is played for the duration of the backend cycle-time, dt. """ def __init__( self, samples: Union[np.ndarray, List[complex]], name: Optional[str] = None, epsilon: float = 1e-7, limit_amplitude: Optional[bool] = None, ): """Create new sample pulse command. Args: samples: Complex array of the samples in the pulse envelope. name: Unique name to identify the pulse. epsilon: Pulse sample norm tolerance for clipping. If any sample's norm exceeds unity by less than or equal to epsilon it will be clipped to unit norm. If the sample norm is greater than 1+epsilon an error will be raised. limit_amplitude: Passed to parent Pulse """ super().__init__(duration=len(samples), name=name, limit_amplitude=limit_amplitude) samples = np.asarray(samples, dtype=np.complex_) self.epsilon = epsilon self._samples = self._clip(samples, epsilon=epsilon) @property def samples(self) -> np.ndarray: """Return sample values.""" return self._samples def _clip(self, samples: np.ndarray, epsilon: float = 1e-7) -> np.ndarray: """If samples are within epsilon of unit norm, clip sample by reducing norm by (1-epsilon). If difference is greater than epsilon error is raised. Args: samples: Complex array of the samples in the pulse envelope. epsilon: Pulse sample norm tolerance for clipping. If any sample's norm exceeds unity by less than or equal to epsilon it will be clipped to unit norm. If the sample norm is greater than 1+epsilon an error will be raised. Returns: Clipped pulse samples. Raises: PulseError: If there exists a pulse sample with a norm greater than 1+epsilon. """ samples_norm = np.abs(samples) to_clip = (samples_norm > 1.0) & (samples_norm <= 1.0 + epsilon) if np.any(to_clip): # first try normalizing by the abs value clip_where = np.argwhere(to_clip) clip_angle = np.angle(samples[clip_where]) clipped_samples = np.exp(1j * clip_angle, dtype=np.complex_) # if norm still exceed one subtract epsilon # required for some platforms clipped_sample_norms = np.abs(clipped_samples) to_clip_epsilon = clipped_sample_norms > 1.0 if np.any(to_clip_epsilon): clip_where_epsilon = np.argwhere(to_clip_epsilon) clipped_samples_epsilon = (1 - epsilon) * np.exp( 1j * clip_angle[clip_where_epsilon], dtype=np.complex_ ) clipped_samples[clip_where_epsilon] = clipped_samples_epsilon # update samples with clipped values samples[clip_where] = clipped_samples samples_norm[clip_where] = np.abs(clipped_samples) if np.any(samples_norm > 1.0) and self._limit_amplitude: amp = np.max(samples_norm) raise PulseError( f"Pulse contains sample with norm {amp} greater than 1+epsilon." " This can be overruled by setting Pulse.limit_amplitude." ) return samples
[docs] def is_parameterized(self) -> bool: """Return True iff the instruction is parameterized.""" return False
@property def parameters(self) -> Dict[str, Any]: """Return a dictionary containing the pulse's parameters.""" return {} def __eq__(self, other: Pulse) -> bool: return ( super().__eq__(other) and self.samples.shape == other.samples.shape and np.allclose(self.samples, other.samples, rtol=0, atol=self.epsilon) ) def __hash__(self) -> int: return hash(self.samples.tostring()) def __repr__(self) -> str: opt = np.get_printoptions() np.set_printoptions(threshold=50) np.set_printoptions(**opt) return "{}({}{})".format( self.__class__.__name__, repr(self.samples), f", name='{self.name}'" if self.name is not None else "", )