QuantumVolume¶
- class QuantumVolume(qubits, backend=None, trials=100, seed=None, simulation_backend=None)[source]¶
Quantum Volume Experiment class.
Overview
Quantum Volume (QV) is a single-number metric that can be measured using a concrete protocol on near-term quantum computers of modest size. The QV method quantifies the largest random circuit of equal width and depth that the computer successfully implements. Quantum computing systems with high-fidelity operations, high connectivity, large calibrated gate sets, and circuit rewriting toolchains are expected to have higher quantum volumes.
The Quantum Volume is determined by the largest circuit depth \(d_{max}\), and equals to \(2^{d_{max}}\). See Qiskit Textbook for an explanation on the QV protocol.
In the QV experiment we generate
QuantumVolume
circuits on \(d\) qubits, which contain \(d\) layers, where each layer consists of random 2-qubit unitary gates from \(SU(4)\), followed by a random permutation on the \(d\) qubits. Then these circuits run on the quantum backend and on an ideal simulator (eitherAerSimulator
orStatevector
).A depth \(d\) QV circuit is successful if it has ‘mean heavy-output probability’ > 2/3 with confidence level > 0.977 (corresponding to z_value = 2), and at least 100 trials have been ran.
See
QuantumVolumeAnalysis
documentation for additional information on QV experiment analysis.References
[1] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, Jay M. Gambetta, Validating quantum computers using randomized model circuits, Phys. Rev. A 100, 032328 (2019), doi: 10.1103/PhysRevA.100.032328 (open)
[2] Petar Jurcevic, Ali Javadi-Abhari, Lev S. Bishop, Isaac Lauer, Daniela F. Bogorin, Markus Brink, Lauren Capelluto, Oktay Günlük, Toshinari Itoko, Naoki Kanazawa, Abhinav Kandala, George A. Keefe, Kevin Krsulich, William Landers, Eric P. Lewandowski, Douglas T. McClure, Giacomo Nannicini, Adinath Narasgond, Hasan M. Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth Srinivasan, Neereja Sundaresan, Cindy Wang, Ken X. Wei, Christopher J. Wood, Jeng-Bang Yau, Eric J. Zhang, Oliver E. Dial, Jerry M. Chow, Jay M. Gambetta, Demonstration of quantum volume 64 on a superconducting quantum computing system (open)
Analysis Class Reference
Experiment Options
These options can be set by
set_experiment_options()
method.- Parameters
trials (int) – Optional, number of times to generate new Quantum Volume circuits and calculate their heavy output.
seed (None or int or SeedSequence or BitGenerator or Generator) – A seed used to initialize
numpy.random.default_rng
when generating circuits. Thedefault_rng
will be initialized with this seed value everytimecircuits()
is called.
Transpiler Options
This option can be set by
set_transpile_options()
method.This option is used for circuit optimization. See the documentation of
qiskit.transpile
for available options.Backend Run Options
This option can be set by
set_run_options()
method.This option is used for controlling job execution condition. Note that this option is provider dependent. See provider’s backend runner API for available options. See the documentation of
IBMQBackend.run
for the IBM Quantum Service.Initialization
Initialize a quantum volume experiment.
- Parameters
qubits (
Sequence
[int
]) – list of physical qubits for the experiment.backend (
Optional
[Backend
]) – Optional, the backend to run the experiment on.trials (
Optional
[int
]) – The number of trials to run the quantum volume circuit.seed (
Union
[int
,SeedSequence
,BitGenerator
,Generator
,None
]) – Optional, seed used to initializenumpy.random.default_rng
when generating circuits. Thedefault_rng
will be initialized with this seed value everytimecircuits()
is called.simulation_backend (
Optional
[Backend
]) – The simulator backend to use to generate the expected results. the simulator must have a ‘save_probabilities’ method. If NoneAerSimulator
simulator will be used (in caseAerSimulator
is not installedqiskit.quantum_info.Statevector
will be used).
Attributes
Return the analysis instance for the experiment
Return the analysis options for
run()
analysis.Return the backend for the experiment
Return the options for the experiment.
Return experiment type.
Return the number of qubits for the experiment.
Return the device qubits for the experiment.
Return options values for the experiment
run()
method.Return the transpiler options for the
run()
method.Methods
Return a list of Quantum Volume circuits.
Return the config dataclass for this experiment
Return a copy of the experiment
QuantumVolume.from_config
(config)Initialize an experiment from experiment config
QuantumVolume.run
([backend, analysis, timeout])Run an experiment and perform analysis.
QuantumVolume.run_analysis
(experiment_data)Run analysis and update ExperimentData with analysis result.
QuantumVolume.set_analysis_options
(**fields)Set the analysis options for
run()
method.QuantumVolume.set_experiment_options
(**fields)Set the experiment options.
QuantumVolume.set_run_options
(**fields)Set options values for the experiment
run()
method.QuantumVolume.set_transpile_options
(**fields)Set the transpiler options for
run()
method.